
Gabriel Groupe B

ORDRE MULTIPLICATIF
& PETIT THÉORÈME DE FERMAT

Itération et ordre

Pour a et n des entiers on cherche à calculer ak (mod n) pour k parcourant N.

Exemple 1.
Pour n = 6 :

— Si a = 5 alors on a 1, 5, 1, 5, 1 . . ..

— Si a = 2 alors on a 1, 2, 4, 2, 4, 2, 4, 2 . . .

Il semblerait qu’on finisse par boucler. Il est déjà possible d’intuiter deux cas. Le premier
est celui où comme pour 5 on retombera sur 1 et la suite des puissances sera bien périodique.
Le second est celuiqui comme pour 2 on ne retombera pas sur 1 et la suite sera seulement
périodique à partir d’un certain rang. Formalisons un peu :

Lemme 2.
Il existe i et ℓ tels que ai+ℓ = ai (mod n) et alors pour tout j ⩾ i on a aj+ℓ = aj (mod n).
Démonstration. Par principe des tiroirs, les chaussettes étant les ak et les tiroirs les valeurs
modulos n. Pour la seconde proposition on a aj+ℓ = aj−iai+ℓ = aj−iai = aj (mod n). □

Formalisons maintenant la distinction des deux cas précédents :

Lemme 3.
Si a est premier avec n, alors pour le ℓ précédent on a aℓ = 1 (mod n).
Démonstration. En effet si a est premier avec n alors a est inversible modulo n et donc aℓ =
(a−1)iai+ℓ = 1 (mod n). □

Ce cas est très agréable puisqu’une fois ℓ déterminé, on n’a pas de i inconnu parasitant
nos calculs. Dans ce cas les ak forment une suite périodique dans Z/nZ.

Lemme 4.
Soit (xi)i∈N une suite périodique. La période minimale T0 est telle que toute période T de
(xi)i∈N est un multiple de T0.
Démonstration. En effet posons la division euclidienne T = qT0+ r où r < T0 alors pour tout
i, xr+i = xqT0+r+i = xT+i = xi donc ou bien r est une période < T0, absurde par définition, ou
bien r = 0. Ainsi T = qT0. □

Définition 5 (Ordre multiplicatif).
Si a est premier avec n on définit on(a) l’ordre de a modulo n, la période minimale de la suite
an dans Z/nZ.
Ainsi, pour tout q ∈ N, on l’équivalence aq = 1 (mod p) ⇐⇒ on(a) | q.

Remarque 6 (Stratégie pour trouver l’ordre).
Pour trouver l’ordre de a modulo n il suffit de trouver un q relativement petit tel que aq = 1
(mod n) et ensuite regarder les diviseurs de q. Parmi le lemme suivant on trouvera on(a)parmi
eux.
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Remarque 7 (Quand gcd(a, n) ̸= 1).
L’ordre de a modulo n n’est défini que lorsque a est premier avec n. Dans le cas contraire,
la suite n’est que périodique à partir d’un certain rang i, à priori inconnu. En fait on peut
déterminer ce i avec un peu d’effort et en utilisant le théorème des restes chinois. Toutefois,
pour diverses raisons, cela nous est rarement utile.

Petit théorème de Fermat

La remarque 6 nous pousse à chercher des q très simples à calculer en fonction de n.
Comme dit précédemment, le cas le plus favorable est celui où a est premier avec n. Suppo-
sons donc que n est premier de sorte que tous les éléments de Z/nZ soit inversibles sauf 0.
Dans le reste de cette partie on notera p pour désigner un nombre premier qui jouera le même
rôle que n précédemment.

Exemple 8.
Pour p = 7 :

— Pour a = 2 on a 2, 4,−1,−2,−4, 1 donc o7(2) = 6.

— Pour a = 5 on a 5, 4,−1,−5,−4, 1 donc o7(5) = 6.

— Pour a = 4, on calcule o7(4) = 3.

Pour p = 11 :

— Pour a = 2 on calcule o11(2) = 10.

— Pour a = 4 on calcule o11(4) = 5.

— Pour a = 10 on calcule o11(10) = 2.

On remarque que dans tous les cas op(a) | p−1. Il est donc naturel de vouloir montrer que
ap−1 = 1 (mod p).

Théorème 9 (Petit théorème de Fermat).
Soit p un nombre premier. Pour tout a non-divisible par p, op(a) | p− 1,
de sorte que pour a non-divisible par p, on a

ap−1 = 1 (mod p),

de sorte que pour a ∈ Z on a
ap = a (mod p).

Démonstration. Soit a non-divisible par p. Regardons

A = {1, a1, a2, . . . , aop(a)−1}

on a Card(A) = op(a). Par définition de op(a) tous les éléments de A ont une valeur différente
modulo p.
Ou bien op(a) = p − 1, ou bien on dispose de b1 non-divisible par p tel que b1 a une valeur
différente de tous les éléments de A modulo p. Soit

A1 = {b1, ab1, a2b1, . . . aop(a)−1b1}.
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Mais alors les éléments de A et de A1 ont tous une valeur différente modulo p. En effet on
aurait sinon au = avb1 (mod p) et alors b1 = au−v (mod p), absurde par définition de b1.
Card(A∪A1) = 2op(a). On peut maintenant prendre b2 qui a une valeur différente de tous les
éléments de A et A1 modulo p. De manière similaire avec A2 = {b2, ab2, a2b2, . . . aop(a)−1b2} on
peut continuer le raisonnement. A la fin, quand on aura épuisé toutes les valeurs possibles
modulo p (sauf 0) on aura

p− 1 = Card((Z/pZ)∗) = Card(A ∪ A1 ∪ A2 · · ·Am−1) = mop(a)

et ainsi op(a) | p− 1. □

Remarque 10 (L’erreur préférée des élèves).
Comme illustré dans 8, on a seulement op(a) | p − 1 et nullement en général op(a) = p − 1.
Si vous écrivez (ou pensez) que le théorème de Fermat est la seconde chose, la POFM vous
retrouvera.

Remarque 11 (Une heureuse erreur).
Il est toutefois possible de s’intéresser au cas spécifique où op(a) = p − 1 (ce qui n’arrive
pas tout le temps) Dans ce cas, tous les éléments de (Z/pZ)∗ peuvent s’écrire comme une
puissance de a. On discute de cas dans l’annexe sur les racines primitives.

Remarque 12 (Une autre preuve).
Il existe une preuve astucieuse et très courte à ce théorème, présentée en annexes.
La preuve présentée supra est plus simple, naturelle, et générale, bien qu’elle soit un peu plus
longue.

Théorème & indicatrice d’Euler

Revenons au cas où n est non-premier. Il est possible de regarder fixement dans les yeux la
preuve précédente et de se demander comment l’adapter au le cas général. Une bonne raison
pour laquelle cela serait possible est que l’apparation du p − 1 est tardive, et qu’il intervient
comme une contrainte donnée par le problème et non comme un paramètre initial.
Finalement, la seule chose qui change pour n quelconque est le nombre de valeurs différentes
inversibles modulo n .

Théorème 13.
On note φ(n) le nombre de valeurs inversibles modulo n. Pour a premier avec n, on(a) | φ(n)
ce qui équivaut à dire

aφ(n) = 1 (mod n).

Démonstration. Strictement la même que pour le théorème de Fermat, en remplaçant "non-
divisible par p" par "premier avec n". □

Reste maintenant à calculer φ(n).

Exemple 14 (A la main).
Que vaut φ(n) pour n valant successivement 4, 5, 8 et 24?
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Proposition 15 (Expression de φ(n)).
Pour n > 0 :

φ(n) = n
∏
p|n

Å
1− 1

p

ã
où les p sont premiers.
Une autre manière de le dire est que n =

∏
i p

αi
i ,

φ(n) =
∏
i

(pi − 1)pαi−1
i .

Démonstration. D’abord φ(n) est le nombre d’entiers entre 0 et n− 1 premiers avec n.
Par ailleurs P l’ensemble des premiers divisant n de sorte que gcd(a, n) = 1 ssi pour tout
p ∈ P , p ∤ a.
Calculons la probibilité que d | a où a est choisi uniformément dans [[0, n − 1]] et d | n : les
multiples de d sont 0, d, . . . , n − d, et ainsi la probibilité est de 1

d
. Mais alors les évènements

(p | a) sont indépendants et ainsi l’évènement gcd(a, n) = 1 a la probibilité
∏

p∈P

Ä
1− 1

p

ä
d’où

l’expression de φ(n). □

Exemple 16 (Sans les mains).
Que vaut φ(n) pour n valant 100, 1024 et 2025?

Proposition 17.
Avec la seconde expression de φ il est clair que pour n et m premiers entre eux on a

φ(nm) = φ(n)φ(m)

.

Remarque 18 (Ordre de grandeur de φ(n), pour la culture).
Dans un sens très précis de "en moyenne" et "ordre de grandeur" que nous ne détaillerons
pas ici, et avec des outils plus avancés on trouve qu’en moyenne l’ordre de grandeur de φ(n)
est de 6n

π2 .
Il faut toutefois se rendre compte que la taille de φ(n) est assez variable.
Il est clair que pour p premier φ(p)

p
→ 1 quand p → ∞.

Mais on peut aussi trouver une suite de ni pour laquelle φ(ni)
ni

→ 0.
Il est donc quelque peu illusoire d’espérer utiliser la valeur 6n

π2 donnée précédemment.
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Exercices

Exercice 1
Démontrer, pour tout entier n ≥ 0, que 7 divise 312n+1 + 26n+2.

Exercice 2
Montrez que pour tout n, 42 | n7 − n.

Exercice 3
Soit n ∈ N∗ impair. Montrer que n | 2n! − 1.

Exercice 4
Soient p, q premiers tels que q | 1 + p+ ...+ pp−1. Montrer que q ≡ 1 (mod p).

Exercice 5
Soit k ≥ 1 un entier premier avec 6. Démontrer qu’il existe un entier n ≥ 0 pour lequel k
divise 2n + 3n + 6n − 1.

Exercice 6
Montrez que pour n ⩾ 2, et a impair on a a2

n−2
= 1 (mod 2n).

Exercice 7
Soit n un entier. Dénombrer les a ∈ [[1, n]] tels que an = 0 (mod n).

Exercice 8
Soit p > 3 premier. Trouver un k > 0 tel que 1k2k + 2k3k + 3k4k + · · · (p − 2)k(p − 1)k = 2
(mod p).

Exercice 9
Soit d divisant n, que vaut Card{k ∈ [[1, n]] : gcd k, n = d}? En déduire la valeur de

∑
d|n φ(d).
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Solutions
Solution de l’exercice 1
Le petit théorème de Fermat indique directement que

312n+1 + 26n+2 ≡ 3× (36)2n + 4× (26)n ≡ 3× 12n + 4× 1n ≡ 3 + 4 ≡ 0 (mod 7).

Solution de l’exercice 2
On a 7 | n7 − n par Fermat. On utilise Fermat pour n = 2 et 3 en faisant la disjonction de cas 0
et le reste et ceci conclut.

Solution de l’exercice 3
Puisque 2 est premier avec n, soit ω l’ordre de 2 modulo n. Par définition, on sait que φ(n) ⩽ n,
donc que φ(n) divise n!. Ainsi, puisque ω divise φ(n), il divise n! également. Ainsi, si l’on pose
k = n!/ω, et puisque n est premier avec 2, on constate que

2n! − 1 ≡ (2ω)k − 1 ≡ 1k − 1 ≡ 0 (mod n).

Solution de l’exercice 4
Si q | pp−1 + pp−2 + . . .+ p+ 1 alors

q | (pp−1 + pp−2 + . . .+ p+ 1)(p− 1) = pp − 1

On a donc l’ordre ω de p modulo q qui divise p, et deux cas sont possibles :
Si ω = 1 alors il vient que p ≡ 1 (mod q) et donc pp−1 + pp−2 + . . .+ p+ 1 ≡ p (mod q) et donc
p = q, mais alors q | 1, absurde.
Si ω = p alors par le petit théorème de Fermat on a p qui divise q − 1.

Solution de l’exercice 5
L’idée est de remarquer que 1/6 + 1/3 + 1/2 = 1. Idéalement, on souhaiterait donc choisir
n = −1, mais on ne peut pas procéder brutalement ainsi. À la place, on va l’entier n = φ(k)−1.
En effet, on constate alors que

6(2n + 3n + 6n − 1) ≡ 3× 2φ(k) + 2× 3φ(k) + 6φ(k) − 6 ≡ 3 + 2 + 1− 6 ≡ 0 (mod n),

et puisque k est premier avec 6, on en conclut que k divise bien 2n + 3n + 6n − 1.

Solution de l’exercice 6
On ne peut pas appliquer Euler-Fermat, puisque φ(2n) = 2n−1. On doit revenir vers de mé-
thode plus classique. Essayons une récurrence.
L’initialisation est faite pour 23 = 8.
Pour l’hérédite on a a2

n−2
= q2n + 1 =⇒ a2

n−1
= (q2n + 1)2 = q2

2n
+ qn+1 + 1.

Solution de l’exercice 7
C’est la même méthode que pour trouver l’expression de φ(n) ; on obtient n

∏
p|n

1
p

.

Solution de l’exercice 8
De imaginons qu’on puisse prendre k = −1, avec l’identité 1

n(n+1)
= 1

n
− 1

n+1
on aurait une

somme téléscopique qui fonctionne. Pour contourner k > 0, on peut prendre k = p−2 puisque
ap−2a = 1 (mod p) donc ap−2 = a−1 (mod p).

Solution de l’exercice 9
On trouve φ(n

d
). En regroupant les nombres de 1, n par gcd on trouve que la somme vaut n.
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Annexe : Preuve alternative pour Euler-Fermat
Proposition 19.
Soit a ∈ (Z/pZ)∗, l’application x 7→ ax est une bijection de (Z/pZ)∗.
Démonstration. En effet, ax ∈ (Z/pZ)∗, l’application est clairement injective, et (Z/pZ)∗ est
un ensemble fini. □

Théorème 20.
(Petit théorème de Fermat) Pour a ∈ (Z/pZ)∗, on a ap−1 = 1.
Démonstration. En effet

∏
x∈(Z/pZ)∗ x ̸= 0 et par ailleurs∏

x∈(Z/pZ)∗
x =

∏
x∈(Z/pZ)∗

ax = ap−1
∏

x∈(Z/pZ)∗
x.

□

Remarque 21.
La même preuve s’adapte bien pour le théorème d’Euler.

Annexe : Sur les racines primitives

Théorème 22.
Soit p premier, il existe a tel que op(a) = p− 1.

Faisons la preuve en quelques étapes :

Lemme 23.
Si l’ordre de a est u et l’ordre de b est v avec u et v premier entre alors ab est d’ordre uv.

Démonstration. On note ω l’ordre de ab, pour m le ppcm de ω et u on a (ab)m = 1 d’une part
et (ab)m = bm d’autre part. Ainsi v | m et donc comme u et v sont premiers entre eux v | ω.
De manière similaire on montre que u | ω et ainsi uv | ω. Comme ω | uv on a bien ω = uv. □

Lemme 24.
Un polynôme de degré d a au plus d racines dans Z/pZ.

Attention, ce lemme n’est plus vrai dans Z/nZ.
Le résultat se montre de la même manière que pour les polynômes sur les réels, par soucis
de concision nous l’admettons.

Démonstration. Soit a l’élément dont l’ordre est le plus grand parmi les éléments de (Z/pZ)∗
et notons ω cet ordre. Pour b ∈ (Z/pZ)∗ d’ordre t et g = gcd(ω, t) alors bg est d’ordre t/g
premier avec ω donc il existe un élément d’ordre ω t

g
d’après le lemme 23.

Par maximalité de ω on a ainsi t = g et donc t | ω. Ainsi bω = 1.
Tous les éléments de (Z/pZ)∗ sont donc racines de Xω − 1 d’où par le lemme 24, ω ⩾ p − 1,
mais alors comme ω | p− 1 on a ω = p− 1. □
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