Gabriel Groupe B

ORDRE MULTIPLICATIF
& PETIT THEOREME DE FERMAT

Itération et ordre
Pour a et n des entiers on cherche a calculer * (mod n) pour k parcourant N.

Exemple 1.
Pourn =6:

— Sia=>5alorsonal, 5 1,51...
— Sia=2alorsonal,24,2,4,2,4,2...

Il semblerait qu’on finisse par boucler. Il est déja possible d’intuiter deux cas. Le premier
est celui ol comme pour 5 on retombera sur 1 et la suite des puissances sera bien périodique.
Le second est celuiqui comme pour 2 on ne retombera pas sur 1 et la suite sera seulement
périodique a partir d'un certain rang. Formalisons un peu :

Lemme 2.

Il existe i et ¢ tels que @™ = @' (mod n) et alors pour tout j > ionaa’** = a’ (mod n).
Démonstration. Par principe des tiroirs, les chaussettes étant les a” et les tiroirs les valeurs
modulos n. Pour la seconde proposition on a a/** = ¢/~'a"** = a’~'a’ = @’ (mod n). O

Formalisons maintenant la distinction des deux cas précédents :

Lemme 3.

Si a est premier avec n, alors pour le ¢ précédent on a a® =1 (mod n).

Démonstration. En effet si a est premier avec n alors a est inversible modulo n et donc af =
(a 1)ia™* =1 (mod n). O

Ce cas est tres agréable puisqu'une fois ¢ déterminé, on n’a pas de ¢ inconnu parasitant
nos calculs. Dans ce cas les a* forment une suite périodique dans Z/nZ.

Lemme 4.

Soit (z;);eny une suite périodique. La période minimale 7 est telle que toute période T' de
(x;)ien est un multiple de Tj.

Démonstration. En effet posons la division euclidienne T' = ¢7j +r ou r < Tj alors pour tout
i, Tryi = TqTy+r+i = Tr4i = &; donc ou bien r est une période < T, absurde par définition, ou
bien r = 0. Ainsi T' = ¢T5. O

Définition 5 (Ordre multiplicatif).

Si a est premier avec n on définit o,,(a) I'ordre de @ modulo n, la période minimale de la suite
a" dans Z/nZ.

Ainsi, pour tout ¢ € N, on1’équivalence a? = 1 (mod p) <= o,(a) | q.

Remarque 6 (Stratégie pour trouver ’ordre).

Pour trouver l'ordre de a modulo n il suffit de trouver un ¢ relativement petit tel que a? = 1
(mod n) et ensuite regarder les diviseurs de ¢. Parmi le lemme suivant on trouvera o, (a)parmi
eux.
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Remarque 7 (Quand ged(a, n) # 1).

L'ordre de @ modulo n n’est défini que lorsque a est premier avec n. Dans le cas contraire,
la suite n’est que périodique a partir d'un certain rang 4, a priori inconnu. En fait on peut
déterminer ce i avec un peu d’effort et en utilisant le théoreme des restes chinois. Toutefois,
pour diverses raisons, cela nous est rarement utile.

Petit théoréeme de Fermat

La remarque 6 nous pousse a chercher des ¢ trés simples a calculer en fonction de n.
Comme dit précédemment, le cas le plus favorable est celui ol a est premier avec n. Suppo-
sons donc que n est premier de sorte que tous les éléments de Z/nZ soit inversibles sauf 0.
Dans le reste de cette partie on notera p pour désigner un nombre premier qui jouera le méme
role que n précédemment.

Exemple 8.

Pourp="7:
— Poura=2o0na24,—1,—-2,—4,1donc o;(2) =
— Poura=5o0nab,4,—1,—5,—4,1donc o;(5) =
— Pour a = 4, on calcule 07(4) = 3.

Pourp=11:
— Pour a = 2 on calcule 0, (2) = 10.
— Pour a = 4 on calcule 04, (4) = 5.
— Pour a = 10 on calcule 01, (10) = 2.

On remarque que dans tous les cas 0,(a) | p— 1. Il est donc naturel de vouloir montrer que
a?!' =1 (mod p).

Théoreme 9 (Petit théoreme de Fermat).
Soit p un nombre premier. Pour tout @ non-divisible par p, o,(a) | p — 1,
de sorte que pour a non-divisible par p, on a

a? ' =1 (mod p),
de sorte que pour a € Z on a
a’? =a (mod p).
Démonstration. Soit a non-divisible par p. Regardons
A={1,a",ad% ... a%@D71}

on a Card(A) = o,(a). Par définition de o,(a) tous les éléments de A ont une valeur différente
modulo p.

Ou bien o,(a) = p — 1, ou bien on dispose de b; non-divisible par p tel que b; a une valeur
différente de tous les éléments de A modulo p. Soit

Al = {b17 CLbl, CL2bl, c. aop(“)_lbl}.
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Mais alors les éléments de A et de A; ont tous une valeur différente modulo p. En effet on
aurait sinon a* = a"b; (mod p) et alors b; = ¢~ (mod p), absurde par définition de b,.
Card(AU A;) = 20,(a). On peut maintenant prendre b, qui a une valeur différente de tous les
éléments de A et A; modulo p. De maniere similaire avec Ay = {by, abs, a®bs, . . . a"P(“)_lbg} on
peut continuer le raisonnement. A la fin, quand on aura épuisé toutes les valeurs possibles
modulo p (sauf 0) on aura

p—1=Card((Z/pZ)*) = Card(AU Ay U Ay - - - Ap,1) = moy(a)
et ainsi o,(a) | p — 1. O

Remarque 10 (L'erreur préférée des éleves).

Comme illustré dans 8, on a seulement o,(a) | p — 1 et nullement en général o,(a) = p — 1.
Si vous écrivez (ou pensez) que le théoreme de Fermat est la seconde chose, la POFM vous
retrouvera.

Remarque 11 (Une heureuse erreur).

II est toutefois possible de s’intéresser au cas spécifique ol 0,(a) = p — 1 (ce qui n’arrive
pas tout le temps) Dans ce cas, tous les éléments de (Z/pZ)* peuvent s’écrire comme une
puissance de a. On discute de cas dans I’annexe sur les racines primitives.

Remarque 12 (Une autre preuve).

Il existe une preuve astucieuse et tres courte a ce théoreme, présentée en annexes.

La preuve présentée supra est plus simple, naturelle, et générale, bien qu’elle soit un peu plus
longue.

Théoréme & indicatrice d’Euler

Revenons au cas ol n est non-premier. Il est possible de regarder fixement dans les yeux la
preuve précédente et de se demander comment 1’adapter au le cas général. Une bonne raison
pour laquelle cela serait possible est que l'apparation du p — 1 est tardive, et qu’il intervient
comme une contrainte donnée par le probleme et non comme un parametre initial.
Finalement, la seule chose qui change pour n quelconque est le nombre de valeurs différentes
inversibles modulo n .

Théoreme 13.
On note ¢(n) le nombre de valeurs inversibles modulo n. Pour a premier avec n, o,(a) | ¢(n)
ce qui équivaut a dire

a?™ =1 (mod n).

Démonstration. Strictement la méme que pour le théoreme de Fermat, en remplagant "non-
divisible par p" par "premier avec n". O
Reste maintenant a calculer ¢(n).

Exemple 14 (A la main).
Que vaut ¢(n) pour n valant successivement 4, 5, 8 et 24?
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Proposition 15 (Expression de ¢(n)).
Pourn > 0:

= (1)

ot les p sont premiers.
Une autre maniére de le dire est que n = [ [, p;",

p(n) =] J(pi — V)pf .

Démonstration. D’abord ¢(n) est le nombre d’entiers entre 0 et n — 1 premiers avec n.

Par ailleurs P 'ensemble des premiers divisant n de sorte que gcd(a,n) = 1 ssi pour tout
peP,pfa.

Calculons la probibilité que d | a ott a est choisi uniformément dans [0,n — 1] et d | n : les
multiples de d sont 0,d,...,n — d, et ainsi la probibilité est de é. Mais alors les événements
(p | a) sont indépendants et ainsi I'évenement ged(a,n) = 1 a la probibilité [ ] (1 — %) d’ot
l’expression de ¢(n). O

Exemple 16 (Sans les mains).
Que vaut ¢(n) pour n valant 100, 1024 et 2025 ?

Proposition 17.
Avec la seconde expression de ¢ il est clair que pour n et m premiers entre eux on a

p(nm) = p(n)p(m)

Remarque 18 (Ordre de grandeur de ¢(n), pour la culture).

Dans un sens tres précis de "en moyenne" et "ordre de grandeur" que nous ne détaillerons
pas ici, et avec des outils plus avancés on trouve qu’en moyenne l'ordre de grandeur de ¢(n)
estde %

Il faut toutefois se rendre compte que la taille de ¢(n) est assez variable.

Il est clair que pour p premier ( b 51 quand p — oo.

Mais on peut aussi trouver une sulte de n; pour laquelle =~ elm) _y 0,
Il est donc quelque peu illusoire d’espérer utiliser la Valeur % donnée précédemment.



Gabriel Groupe B

Exercices

Exercice 1
Démontrer, pour tout entier n > 0, que 7 divise 3! 4 26n+2,

Exercice 2
Montrez que pour tout n, 42 | n” — n.

Exercice 3
Soit n € N* impair. Montrer que n | 2" — 1.

Exercice 4
Soient p, ¢ premiers tels que ¢ | 1 + p+ ... + p~'. Montrer que ¢ = 1 (mod p).

Exercice 5
Soit £ > 1 un entier premier avec 6. Démontrer qu’il existe un entier n > 0 pour lequel %
divise 2" + 3" + 6" — 1.

Exercice 6
Montrez que pour 7 > 2, et ¢ impair ona a®" =1 (mod 2").

Exercice 7
Soit n un entier. Dénombrer les a € [1,n] tels que ™ = 0 (mod n).

Exercice 8
Soit p > 3 premier. Trouver un k > 0 tel que 1¥2% + 2K3% 4 3k4k 4 ... (p — 2)*(p — 1)k = 2
(mod p).

Exercice 9
Soit d divisant n, que vaut Card{k € [1,n] : gcdk,n = d} ? En déduire la valeur de },, ¢(d).
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Solutions

Solution de I’exercice 1
Le petit théoreme de Fermat indique directement que

312l L 9nt2 = 35 (39 14 x (25" =3x 1" +4x1"=34+4=0 (mod 7).

Solution de I'exercice 2
On a7 | n” —n par Fermat. On utilise Fermat pour n = 2 et 3 en faisant la disjonction de cas 0
et le reste et ceci conclut.

Solution de 1’exercice 3

Puisque 2 est premier avec n, soit w I'ordre de 2 modulo n. Par définition, on sait que p(n) < n,
donc que ¢(n) divise n!. Ainsi, puisque w divise ¢(n), il divise n! également. Ainsi, sil’on pose
k = nl/w, et puisque n est premier avec 2, on constate que

M _1=29)-1=1"-1=0 (mod n).

Solution de I'exercice 4
Sig|pP~t+pP2+...+p+1alors

| P+ 4+ p+ -1 =p" 1

On a donc I'ordre w de p modulo ¢ qui divise p, et deux cas sont possibles :

Siw =1alorsil vientque p=1 (mod ¢) etdoncp ' +p*?+...+p+1=p (mod q) et donc
p = ¢, mais alors ¢ | 1, absurde.

Siw = p alors par le petit théoreme de Fermat on a p qui divise g — 1.

Solution de I'exercice 5

L’'idée est de remarquer que 1/6 + 1/3 + 1/2 = 1. Idéalement, on souhaiterait donc choisir
n = —1, mais on ne peut pas procéder brutalement ainsi. A la place, on va I'entier n = o (k)—1.
En effet, on constate alors que

6(2" +3"+6"—1)=3x2°% 1 2% 3°® L 6¢F) _6=34+24+1-6=0 (modn),

et puisque k est premier avec 6, on en conclut que k divise bien 2" 4 3" + 6" — 1.

Solution de I'exercice 6

On ne peut pas appliquer Euler-Fermat, puisque ¢(2") = 2"~!. On doit revenir vers de mé-
thode plus classique. Essayons une récurrence.

L'initialisation est faite pour 23 = 8.

Pour I'héréditeona a?” * = ¢2"+1 = ¥ = (2" +1)2=¢" + ¢ + 1.

Solution de l'exercice 7
1

C’est la méme méthode que pour trouver I'expression de ¢(n); on obtient n ], - -

Solution de I'exercice 8

. . ; . o y. ey s 1 _ 1 _ 1 .
De imaginons qu’on puisse prendre k = —1, avec I'identité _~== = - — =5 on aurait une
somme téléscopique qui fonctionne. Pour contourner k£ > 0, on peut prendre k = p—2 puisque

a’?a =1 (mod p) donc a?? = a~! (mod p).

Solution de I'exercice 9
On trouve ¢(%). En regroupant les nombres de 1, n par gcd on trouve que la somme vaut n.

6
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Annexe : Preuve alternative pour Euler-Fermat

Proposition 19.

Soit a € (Z/pZ)*, 'application x — ax est une bijection de (Z/pZ)*.

Démonstration. En effet, ax € (Z/pZ)*, 'application est clairement injective, et (Z/pZ)* est
un ensemble fini. O

Théoréme 20.
(Petit théoreme de Fermat) Pour a € (Z/pZ)*, ona a?~' = 1.
Démonstration. Eneffet [[ ., 7). # 0 et par ailleurs

H xr = H ar = aP™* H x.

ze(Z/pL)* ze(Z/pL)* ze(Z/pL)*

Remarque 21.
La méme preuve s’adapte bien pour le théoreme d’Euler.

Annexe : Sur les racines primitives

Théoréme 22.
Soit p premier, il existe a tel que o,(a) = p — 1.

Faisons la preuve en quelques étapes :

Lemme 23.

Sil'ordre de a est u et 'ordre de b est v avec u et v premier entre alors ab est d’ordre uv.
Démonstration. On note w 1’ordre de ab, pour m le ppcm de w et w on a (ab)™ = 1 d"une part
et (ab)™ = b™ d’autre part. Ainsi v | m et donc comme u et v sont premiers entre eux v | w.
De maniere similaire on montre que u | w et ainsi uv | w. Comme w | uv on abienw = wv. O

Lemme 24.

Un polynome de degré d a au plus d racines dans Z/pZ.

Attention, ce lemme n’est plus vrai dans Z/nZ.

Le résultat se montre de la méme maniére que pour les polyndmes sur les réels, par soucis
de concision nous l’admettons.

Démonstration. Soit a I'élément dont I'ordre est le plus grand parmi les éléments de (Z/pZ)*
et notons w cet ordre. Pour b € (Z/pZ)* d’ordre t et g = ged(w,t) alors b9 est d’ordre t/g
premier avec w donc il existe un élément d’ordre wé d’apres le lemme 23.

Par maximalité de w on a ainsi t = g et donc ¢ | w. Ainsi b = 1.

Tous les éléments de (Z/pZ)* sont donc racines de X“ — 1 d’out par le lemme 24, w > p — 1,
mais alors commew | p—lonaw =p— 1. 0]



