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Probléemes de suites

Les problemes d’arithmétique faisant intervenir les suites sont le nouveau jouet des créateurs de
problemes. Les arguments a savoir maitriser sont variés, puisqu’ils combinent les réflexes d’hygiene
en arithmétique (divisibilité, taille, étude des facteurs premiers) et les réflexes d’étude de suites
(variations, comparaison d'un terme a l'autre, introduction de suites auxiliaires). Ces derniers
réflexes sont en général un peu plus difficiles car moins enseignés en olympiades. Voici donc quelques
conseils.

> Si une suite fait intervenir des relations de divisibilités (par exemple a,, | b,), il est souvent
intéressant d’introduire la suite quotient (¢, = b,/a,) et d’étudier cette suite (peut-étre que
ses variations sont contrdlées 7). De maniere générale, il est conseillé d’introduire des suites
auxiliaires de nature arithmétique (valuation p—adique, PGCD de termes consécutifs...).
On rappelle quun bon changement de variable permet de diminuer le nombre de variables
dans les hypotheses (toujours chercher a travailler avec peu de termes), une relation reliant
a, et a; + ...+ a,_1 est moins facile & manipuler qu’une relation liant S,, — S, _; et S,,_1).

> Sion a une relation vraie pour tout n, il est intéressant d’étudier cette relation a 'indice n
et a I'indice n+ 1. Exemple : si I’énoncé dit que k | a, + ...+ a, 4k pour tout indice n, alors
on a

klan+ ...+ ankx et ka1 + ...+ anipr1, = k| Gnipr1 — an.
Cette nouvelle divisibilité possede moins de termes donc est plus facile & manipuler.

> 1l est toujours intéressant de voir si une suite d’entiers est bornée. Si elle I'est, alors elle
prend une infinité de fois la méme valeur, ce qui ouvre la porte a des résultats du type
"la suite est périodique/constante a partir d’un certain rang/constante”. De tels résultats
peuvent s’obtenir a l'aide d’arguments de taille : Si la suite (a,) est bornée par M et si
p | an — a,, avec p > 2M, alors a, = a,,. Bien souvent, obtenir les variations de la suite
constitue 'entrée du probleme, et rapporte des points partiels. Rappelons enfin qu’une suite
strictement décroissante d’entiers strictement positifs est constante a partir d'un certain
rang.

> Si un probléme de suite fait intervenir la variable n et la suite a, en méme temps (par
exemple un terme de la forme PGCD(n,a,)), il est intéressant de chercher des valeurs
particulieres de n : n» un nombre premier ou une puissance de nombres premiers par exemple.

> Si la suite est définie par un systéeme dynamique, (par exemple une relation de récurrence
avec éventuellement une disjonction de cas, voire enoncé de 1’exo 2). Il peut étre intéressant
de renverser la relation et partir de la fin, ou encore de considérer une suite d’indices pour
lesquels les termes rentrent tous dans le méme cas (pour par exemple se rendre compte
qu’une telle suite ne peut pas étre arbitrairement grande)...

> Le conseil le plus naturel : tester des conjectures sur des petits cas puis les montrer par
récurrence.

On vous invite a compléter les exercices de ce TD avec le TD de suites donné par
Erik et Eva au groupe D du stage de Valbonne 2025, dont la sélection des exercices
est tres pertinent.
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f{ercice 1. (All Russia 2018) Soit ay,as, ... une suite infinie d’entiers et py, po, ... une suite de

nombres premiers distincts telle que p,, | a, pour tout indice n > 1. On suppose que pour toute
paire (n, k) d’indices, a,, — ar, = p, — px. Montrer que la suite (a,) est constituée exclusivement de
nombres premiers.

Solution 1. Notons b, I'entier tel que a,, = p,b,. On a donc

Pn — Pk = bnpn - bkpk — pk(bk - 1) - pn(bn - 1)

pour tous indices k et n. On fixe & présent un indice n. Pour tout k # n, py # p, donc py | b, — 1
(car les py sont deux a deux distincts). On déduit que b, —1 est divisible par une infinité de nombres
premiers, ce qui implique que b, = 1. On a donc a,, = p,, ce qui implique le résultat voulu.

'Z:Pcercice 2. (Belarus Iran 2022) Existe-t-il une suite ag, ag, ... d’entiers strictement positifs telle

que pour tous indices 7 et j,
d(ai + aj) =1 —|—j,
ou d(n) est le nombre de diviseurs positifs de n.

Solution 2. Puisque d(2a;) = 2i, la suite (a;) est non bornée. D’autre part, puisque ag; + a; et
as9; + a3 ont un nombre impair de diviseurs, ce sont des carrés parfaits. Or, leur différence az — a;
est bornée, donc ces carrés parfaits sont eux-méme bornés. Il résulte que (ag;) est bornée, ce qui
est absurde.

‘Exercice 3. (Iran 2017 Round 2)

1. Montrer qu’il n’existe pas de suites ay, as, ... d’entiers strictement positifs telles que pour
toute pair (7, j) d’'indices distincts, PGCD(a; + j,a; + 1) = 1.
2. Soit p un nombre premier impair. Montrer qu’il existe une suite a, as, ... d’entiers stricte-

ment positifs telle que pour toute pair (4, j) d’indices distincts, PGCD(a; + j,a; + i) n’est
pas divisible par p.

Solution 3.

1. Montrons qu'il existe un couple (3, j) tel que a;+j et a;+i sont pairs. En effet, si ce n’est pas
le cas, alors (a; +7)+ (a; +1) est toujours impair. Comme ce nombre vaut (a; + 1)+ (a; +j),
cela veut dire que a; + ¢ et a; + j ne sont jamais de méme parité, ce qui est absurde en
appliquant le principe des tiroirs a trois indices i, j et k.

2. La question précédente nous incite a construire une suite satisfaisant la condition plus forte
que (a; + 1) + (a; + j) nest jamais divisible par p. Pour cela, il suffit de choisir a; = 1 — i
mod p (ce qui est le cas par exemple en posant a; = pi+1—i. On a alors (a;+1)+(a;+7j) = 2
mod p, donc p ne peut pas diviser a la fois a; + j et a; + 1.

Exercice 4. (Taiwan IMOC 2021 N3) Pour tout entier z > 2, on note f(x) son plus grand facteur

premier. Soient M et k des entiers strictement positifs. Une suite (a,) d’entiers strictement positifs
est définie par a1 = M > 1 et
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T X f(a,) sia, est composé
ntl a, + k sinon

Montrer que la suite (a,) est bornée.

Solution 4. D’apres la définition, si a,, est composé alors a,1 < a, et si a, est premier, a, 1 =
a, + k. Donc pour que la suite prenne de grandes valeurs, elle doit contenir beaucoup de termes
consécutifs qui sont des nombres premiers, et qui forment alors une sous-suite arithmétique de
raison k. Donc la suite (a,,) ne peut pas traverser un intervalle de longueur k + 1 ne contenant que
des nombres composés. Or, il est classique qu’il existe des intervalles d’entiers arbitrairement grands
qui ne contiennent pas de nombres premiers, et si la suite ne peut pas traverser ces intervalles, elle
sera bornée. C’est ce que 1'on formalise ci-apres.

Considérons lintervalle [(M + k)! 4+ 2, (M + k)! + k + 2]. Les entiers de cet intervalle sont de
la forme (M + k)! 4+ ¢, qui est divisible par ¢ sans lui étre égal. Donc cet intervalle contient k
nombres composés. Supposons par ’absurde que la suite (a,,) soit non bornée et qu’il existe donc
un indice n > 1, choisi minimal, tel que a,, > (M + k)! + k + 2. Par minimalité de n, a,_; < a,
donc non seulement a,_; est premier mais en plus il vérifie a,_; < (M + k)! + k + 3. On a donc
Ap—1 = an—k = (M +Fk)!+2. Il vient que a,—1 € [(M+E)!+2, (M +k)!+k+2], ce qui est absurde
car il est premier. La suite (a,) prend donc toujours des valeurs inférieures a (M + k)! + k + 2, ce
qui conclut.

Solution alternative
La difficulté est qu’on ne sait pas comment caractériser la borne attendue, et un raisonnement par
I’absurde en extraillant une sous-suite infinie n’a pas ’air de produire d’effet tel quel.

Comencons par examiner les changements d’état du systeme. Par exemple, cherchons les conditions
sur ¢ tel quil existe n tel que a,, ayi1, ..., a@yee sont premiers (ce qui implique notamment que
Upir = a, + kr pour tout k < £). C’est pertinent dans la mesure o, si la suite est bornée, un tel
¢ est nécessairement petit. Remarquons que si p est un nombre premier avec k, k est inversible
donc les entiers a,, + kr avec r qui varie sont deux a deux distincts modulo p. En particulier, si
¢ > p+ 1, 'un de ces termes est nul modulo p, donc égal a p (car premier par hypothese). Ainsi,
si ¢ est grand, a,, doit étre petit.

On est prét a formaliser un tel raisonnement. Supposons que la suite est non bornée et choisissons
un entier A, supposé grand, dont la taille exacte sera précisée plus tard (voir lignes violettes qui
donnent les conditions). Comme la suite (a,) est non bornée, il existe un indice n, que 1'on prend
minimal, tel que a,, > A. Par minimalité de n, a,_1 < A < a,, donc a,,_; est premier.

Soit p le plus petit nombre premier ne divisant pas £. On montre désormais que a,,_1, a,—2, ..., 0y—p
sont premiers, en procédant par récurrence décroissante sur I'indice de la suite. On a déja que
a,—1 est premier.

Supposons que a,_1,...,a0,_, sont premiers avec p — 1 > r > 1. Alors a, = a,_, + kr, donc
Qp_r = A —kr. Si a,_,—1 est composé, a, .1 = an_r + f(a,__1). De cette relation, on déduit
flan—r—1) | an—p, ce qui force a,,—_, = f(a,—,—1) (car a,_, est premier). Mais alors a,,_,_1 = 2a,_, >
2(A — kr). En choisissant A assez grand, par exemple A tel que 2(A — kp) > A (ce qui revient a
choisir A > 2kp), on obtient que 2(A — kr) > A. Cela contredit la minimalité de n. on déduit que
an_r_1 est également premier, ce qui acheve la récurrence.
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Cela implique que a1, ..., a,—, sont tous premiers et deux a deux distincts modulo p, sont tous
premiers. L'un d’entre eux, disons a,,_; étant nul modulo p, il vaut p. Mais alors a,, = a,,_; + ik =
p + ik. En choisissant A suffisamment grand, par exemple A tel que A > p + pk, on obtient une
contradiction car a,, = p + ik < p+ pk < A. D’ou la contradiction espérée.

Z:?(ercice 5. (IMO 2018 P5) Soit ay,as, ... une suite infinie d’entiers strictement positifs. On

suppose qu’il existe un entier N > 1 tel que, pour tout entier n > N, le nombre

ap—1 Qp,

ap | Gz
—+—=+...+
Q9 as Qp, aq

est un entier. Montrer qu’il existe un entier M tel que a,, = a,,+1 pour tout entier m > M.

Solution 5. Premier réflexe : Notons brievement S, la somme considérée. On examine 'hy-
Ap1 — G an
al An+41

pothese de I’énoncé aux indices n et n+ 1. Cela donne que le nombre S, 1 — .5, =

est entier. C'est avec cette hypothese, a savoir que |a, 101 | Gpi1(ans1 — an) + ara, | pour tout

n = N, que nous allons travailler par la suite.

Cette hypothese implique notamment que a1 | a1a,, ce qui implique que I'ensemble des facteurs
premiers divisant les termes de la suite (a,) est fini.

Soit p un nombre premier. La relation de divisibilité implique

vp(a1) + vp(ant1) < vp(angr(an1 — an) + aray).

C’est en voulant expliciter le terme de droite en fonction de wv,(ay),v,(a,) et vy(ans1) que on
aboutit a la disjonction de cas qui suit, et dans laquelle on pose o, = v,(a,) et o = 4.
> Si o, > a, alors a < a,41 < a,. Supposons d’abord que a,;1 < a < a,. Alors
Up(ant1(anrr — an) + a1a,) = 20,41 < @ + auiq, ce qui est absurde. D’autre part, si
a < ap < apy, alors vy(ani1(ane1 — an) + a1a,) = o+ @, < @ + a,q1, également en
contradiction avec la relation ci-dessus.
Par récurrence immédiate, la suite (ay) est alors minorée et décroissante, donc, a partir
d’un certain rang [V, elle est constante.

> Si a, < a, alors a,41 > a,. En effet, si on avait a,4+1 < o, alors vy(ant1(ans1 — an) +
a1a,) = 20,41 < @+ apy1, ce qui est en contradiction avec la relation de divisibilité.
Ainsi, si aucun indice n ne vérifie o,, > «, ce qu’on est en droit de supposer au vu du
premier cas, la suite (qy) est croissante et majorée par «, donc, a partir d’un certain rang
N, elle est constante.
Vu que I'ensemble P des facteurs premiers divisant un terme de la suite est fini, on peut prendre
M = max{N,,p € P}. A partir de ce rang M, les suites v,(a,) sont toutes constantes, ce qui veut
dire que (a,) elleeméme est constante.

Exercice 6. (China TST 2016) Soit ¢,d > 2 des entiers naturels. Soit (a,) la suite définie par

a1 =cet ayy = a% + ¢. Montrer que pour tout n > 2, il existe un nombre premier p tel que p | ay,
et p ne divise aucun des a; pour i =1,...,n — 1.

Solution 6. On commence par examiner les propriétés de la suite. En posant P(X) = X? + ¢,
cette suite satisfait a; = P(0) et a,,1 = P(a,) = P™(0), ot la notation P™ désigne la n—eme
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itérée de P. Ainsi, puisque P est a coefficients entier, I'itération de la relation  —y | P(x) — P(y)
donne que pour tout n,

= an, — 0| PO(a,) — PO0) = ansr — ap.
En particulier, si d divise a,, et a,,, puisqu’'on a a,_,, = a, mod a,, donc d divise a,,_,,. Mais
on a aussi que si d | a,, et a,_.,, alors puisqu’on a a, = a,_,, mod a,,, on a déduit que d | a,.
On déduit que |PGCD(ay, a,) = PGCD(ay, a,—pm) | Cette relation est suffisante pour enclencher
I'algorithme d’Euclide, qui implique que PGCD(ay,, a,,) = PGCD(apccpmm), @) = apcaepmm),
avec la convention que ag = 0.

On n’a pas encore utilisé la forme particuliere de P. On a la divisibilité raffinée suivante :

a? = P(a,) — ¢ = P(a,) — P(0) | PO (a,) — PO(0) = apye — ay.

n

On va conclure avec cette relation. Supposons par l'absurde que a, ne possede aucun facteur
premier ne divisant pas a;j ...a,_1. Soit p un facteur premier quelconque de a,. On dispose d’un
indice j, qu’on suppose minimal, tel que p | a;. Au vu de la minimalité de j et de la relation
PGCD(a;,a,) = apacepn,j), on déduit que j | n. On a alors, du fait de la relation précédente,
an = a; mod af et en particulier, a, = a; mod p?r(@) . On déduit que v,(a,) = v,(a;).

Comme vy(an) € {vp(an-1),vp(an-2),...,vy(a1)} pour tout p, on déduit que a,, < a; ...a,—;. Mais
une récurrence immédiate prouve l'inégalité contraire, ce qui prouve que a, admet au moins un
nombre premier qui ne divise aucun des termes précédents de la suite.

Exercice 7. (Dutch BXMO TST 2019) Existe-t-il un entier k et une suite non constante
n

>1
ai, as, . .. telle que a, = PGCD(ay 1k, apikr1) pour tout indice n > 1.
Solution 7. Pour comprendre 'exercice, il est essentiel de comprendre les cas k = 2 et k = 3.
Ces cas mettent en lumiere la stratégie a adopter : on va montrer que a,, | a,.1 pour tout n. Cela
implique d’abord que la suite est croissante, mais aussi que a, = PGCD(ayk, Gpiks1) = Gnir,
donc la suite est croissante et périodique, elle est donc constante.

Puisque ay, | Gpqr €t @y | @nipe1 pour tout indice n, on a par récurrence que |y | Gpak+b(k+1) | POUT

toute paire d’entiers positifs (a,b). Pour montrer que a,, | a,41, il suffit de montrer que a,, divise
Gpigr1 €6 nipro. La premiere divisibilité vient de la relation de 1’énoncé, on montre désormais
la deuxieme divisibilité. On a a, | anyr2 €t @y | Any—1)(kt1), donc a, | PGCD(ap 4k, nppz_1) =
n4k2—k—1- On montre alors par récurrence descendante sur 7 que @y, | Gpqr24(t1)r- Cest déjale cas
pour r = k—2. On suppose que c’est le cas pour un certain 7 < k—2. On a donc a,, | @ qrro+(kt1)r €t
G, ‘ Ap-(k+1) (r+1) 5 donc a, ‘ PGCD(CLnHkJrl)(rH), @n+k+2+(k+1)r) = Unt(k+1)r—k = Qn4k4+2+4(k+1)(r—1)-
Ceci acheve la récurrence. En particulier, pour r = 0, on trouve a,, | @, 2, donc a, | a,41, ce qui
nous permet de conclure.



