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Problèmes de suites

Les problèmes d’arithmétique faisant intervenir les suites sont le nouveau jouet des créateurs de
problèmes. Les arguments à savoir maitriser sont variés, puisqu’ils combinent les réflexes d’hygiène
en arithmétique (divisibilité, taille, étude des facteurs premiers) et les réflexes d’étude de suites
(variations, comparaison d’un terme à l’autre, introduction de suites auxiliaires). Ces derniers
réflexes sont en général un peu plus difficiles car moins enseignés en olympiades. Voici donc quelques
conseils.

➢ Si une suite fait intervenir des relations de divisibilités (par exemple an | bn), il est souvent
intéressant d’introduire la suite quotient (cn = bn/an) et d’étudier cette suite (peut-être que
ses variations sont contrôlées ?). De manière générale, il est conseillé d’introduire des suites
auxiliaires de nature arithmétique (valuation p−adique, PGCD de termes consécutifs...).
On rappelle qu’un bon changement de variable permet de diminuer le nombre de variables
dans les hypothèses (toujours chercher à travailler avec peu de termes), une relation reliant
an et a1 + . . .+ an−1 est moins facile à manipuler qu’une relation liant Sn − Sn−1 et Sn−1).

➢ Si on a une relation vraie pour tout n, il est intéressant d’étudier cette relation à l’indice n
et à l’indice n+1. Exemple : si l’énoncé dit que k | an+ . . .+ an+k pour tout indice n, alors
on a

k | an + . . .+ an+k et k | an+1 + . . .+ an+k+1,⇒ k | an+k+1 − an.

Cette nouvelle divisibilité possède moins de termes donc est plus facile à manipuler.

➢ Il est toujours intéressant de voir si une suite d’entiers est bornée. Si elle l’est, alors elle
prend une infinité de fois la même valeur, ce qui ouvre la porte à des résultats du type
”la suite est périodique/constante à partir d’un certain rang/constante”. De tels résultats
peuvent s’obtenir à l’aide d’arguments de taille : Si la suite (an) est bornée par M et si
p | an − am avec p > 2M , alors an = am. Bien souvent, obtenir les variations de la suite
constitue l’entrée du problème, et rapporte des points partiels. Rappelons enfin qu’une suite
strictement décroissante d’entiers strictement positifs est constante à partir d’un certain
rang.

➢ Si un problème de suite fait intervenir la variable n et la suite an en même temps (par
exemple un terme de la forme PGCD(n, an)), il est intéressant de chercher des valeurs
particulières de n : n un nombre premier ou une puissance de nombres premiers par exemple.

➢ Si la suite est définie par un système dynamique, (par exemple une relation de récurrence
avec éventuellement une disjonction de cas, voire enoncé de l’exo 2). Il peut être intéressant
de renverser la relation et partir de la fin, ou encore de considérer une suite d’indices pour
lesquels les termes rentrent tous dans le même cas (pour par exemple se rendre compte
qu’une telle suite ne peut pas être arbitrairement grande)...

➢ Le conseil le plus naturel : tester des conjectures sur des petits cas puis les montrer par
récurrence.

On vous invite à compléter les exercices de ce TD avec le TD de suites donné par
Erik et Eva au groupe D du stage de Valbonne 2025, dont la sélection des exercices
est très pertinent.
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Exercice 1. (All Russia 2018) Soit a1, a2, . . . une suite infinie d’entiers et p1, p2, . . . une suite de

nombres premiers distincts telle que pn | an pour tout indice n ⩾ 1. On suppose que pour toute
paire (n, k) d’indices, an − ak = pn − pk. Montrer que la suite (an) est constituée exclusivement de
nombres premiers.

Solution 1. Notons bn l’entier tel que an = pnbn. On a donc

pn − pk = bnpn − bkpk ⇐⇒ pk(bk − 1) = pn(bn − 1)

pour tous indices k et n. On fixe à présent un indice n. Pour tout k ̸= n, pk ̸= pn donc pk | bn − 1
(car les pk sont deux à deux distincts). On déduit que bn−1 est divisible par une infinité de nombres
premiers, ce qui implique que bn = 1. On a donc an = pn, ce qui implique le résultat voulu.

Exercice 2. (Belarus Iran 2022) Existe-t-il une suite a1, a2, . . . d’entiers strictement positifs telle

que pour tous indices i et j,

d(ai + aj) = i+ j,

où d(n) est le nombre de diviseurs positifs de n.

Solution 2. Puisque d(2ai) = 2i, la suite (ai) est non bornée. D’autre part, puisque a2i + a1 et
a2i + a3 ont un nombre impair de diviseurs, ce sont des carrés parfaits. Or, leur différence a3 − a1
est bornée, donc ces carrés parfaits sont eux-même bornés. Il résulte que (a2i) est bornée, ce qui
est absurde.

Exercice 3. (Iran 2017 Round 2)

1. Montrer qu’il n’existe pas de suites a1, a2, . . . d’entiers strictement positifs telles que pour
toute pair (i, j) d’indices distincts, PGCD(ai + j, aj + i) = 1.

2. Soit p un nombre premier impair. Montrer qu’il existe une suite a1, a2, . . . d’entiers stricte-
ment positifs telle que pour toute pair (i, j) d’indices distincts, PGCD(ai + j, aj + i) n’est
pas divisible par p.

Solution 3.

1. Montrons qu’il existe un couple (i, j) tel que ai+j et aj+i sont pairs. En effet, si ce n’est pas
le cas, alors (ai+ j)+(aj + i) est toujours impair. Comme ce nombre vaut (ai+ i)+(aj + j),
cela veut dire que ai + i et aj + j ne sont jamais de même parité, ce qui est absurde en
appliquant le principe des tiroirs à trois indices i, j et k.

2. La question précédente nous incite à construire une suite satisfaisant la condition plus forte
que (ai + i) + (aj + j) n’est jamais divisible par p. Pour cela, il suffit de choisir ai ≡ 1 − i
mod p (ce qui est le cas par exemple en posant ai = pi+1−i. On a alors (ai+i)+(aj+j) ≡ 2
mod p, donc p ne peut pas diviser à la fois ai + j et aj + i.

Exercice 4. (Taiwan IMOC 2021 N3) Pour tout entier x ⩾ 2, on note f(x) son plus grand facteur

premier. Soient M et k des entiers strictement positifs. Une suite (an) d’entiers strictement positifs
est définie par a1 = M > 1 et
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an+1 =

{
an − f(an) si an est composé
an + k sinon

Montrer que la suite (an) est bornée.

Solution 4. D’après la définition, si an est composé alors an+1 < an et si an est premier, an+1 =
an + k. Donc pour que la suite prenne de grandes valeurs, elle doit contenir beaucoup de termes
consécutifs qui sont des nombres premiers, et qui forment alors une sous-suite arithmétique de
raison k. Donc la suite (an) ne peut pas traverser un intervalle de longueur k+1 ne contenant que
des nombres composés. Or, il est classique qu’il existe des intervalles d’entiers arbitrairement grands
qui ne contiennent pas de nombres premiers, et si la suite ne peut pas traverser ces intervalles, elle
sera bornée. C’est ce que l’on formalise ci-après.

Considérons l’intervalle J(M + k)! + 2, (M + k)! + k + 2K. Les entiers de cet intervalle sont de
la forme (M + k)! + ℓ, qui est divisible par ℓ sans lui être égal. Donc cet intervalle contient k
nombres composés. Supposons par l’absurde que la suite (an) soit non bornée et qu’il existe donc
un indice n ⩾ 1, choisi minimal, tel que an ⩾ (M + k)! + k + 2. Par minimalité de n, an−1 < an
donc non seulement an−1 est premier mais en plus il vérifie an−1 < (M + k)! + k + 3. On a donc
an−1 = an−k ⩾ (M+k)!+2. Il vient que an−1 ∈ J(M+k)!+2, (M+k)!+k+2K, ce qui est absurde
car il est premier. La suite (an) prend donc toujours des valeurs inférieures à (M + k)! + k + 2, ce
qui conclut.

Solution alternative
La difficulté est qu’on ne sait pas comment caractériser la borne attendue, et un raisonnement par
l’absurde en extraillant une sous-suite infinie n’a pas l’air de produire d’effet tel quel.

Començons par examiner les changements d’état du système. Par exemple, cherchons les conditions
sur ℓ tel qu’il existe n tel que an, an+1, . . . , an+ℓ sont premiers (ce qui implique notamment que
an+r = an + kr pour tout k ⩽ ℓ). C’est pertinent dans la mesure où, si la suite est bornée, un tel
ℓ est nécessairement petit. Remarquons que si p est un nombre premier avec k, k est inversible
donc les entiers an + kr avec r qui varie sont deux à deux distincts modulo p. En particulier, si
ℓ ⩾ p + 1, l’un de ces termes est nul modulo p, donc égal à p (car premier par hypothèse). Ainsi,
si ℓ est grand, an doit être petit.

On est prêt à formaliser un tel raisonnement. Supposons que la suite est non bornée et choisissons
un entier A, supposé grand, dont la taille exacte sera précisée plus tard (voir lignes violettes qui
donnent les conditions). Comme la suite (an) est non bornée, il existe un indice n, que l’on prend
minimal, tel que an ⩾ A. Par minimalité de n, an−1 < A ⩽ an, donc an−1 est premier.

Soit p le plus petit nombre premier ne divisant pas k.Onmontre désormais que an−1, an−2, . . . , an−p

sont premiers, en procédant par récurrence décroissante sur l’indice de la suite. On a déjà que
an−1 est premier.

Supposons que an−1, . . . , an−r sont premiers avec p − 1 ⩾ r ⩾ 1. Alors an = an−r + kr, donc
an−r ⩾ A − kr. Si an−r−1 est composé, an−r−1 = an−r + f(an−r−1). De cette relation, on déduit
f(an−r−1) | an−r, ce qui force an−r = f(an−r−1) (car an−r est premier). Mais alors an−r−1 = 2an−r ⩾
2(A − kr). En choisissant A assez grand, par exemple A tel que 2(A − kp) ⩾ A (ce qui revient à
choisir A ⩾ 2kp), on obtient que 2(A− kr) ⩾ A. Cela contredit la minimalité de n. on déduit que
an−r−1 est également premier, ce qui achève la récurrence.
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Cela implique que an−1, . . . , an−p sont tous premiers et deux à deux distincts modulo p, sont tous
premiers. L’un d’entre eux, disons an−i étant nul modulo p, il vaut p. Mais alors an = an−i + ik =
p + ik. En choisissant A suffisamment grand, par exemple A tel que A > p + pk, on obtient une
contradiction car an = p+ ik ⩽ p+ pk < A. D’où la contradiction espérée.

Exercice 5. (IMO 2018 P5) Soit a1, a2, . . . une suite infinie d’entiers strictement positifs. On

suppose qu’il existe un entier N > 1 tel que, pour tout entier n ⩾ N , le nombre

a1
a2

+
a2
a3

+ . . .+
an−1

an
+

an
a1

est un entier. Montrer qu’il existe un entier M tel que am = am+1 pour tout entier m ⩾ M .

Solution 5. Premier réflexe : Notons brièvement Sn la somme considérée. On examine l’hy-

pothèse de l’énoncé aux indices n et n+1. Cela donne que le nombre Sn+1−Sn =
an+1 − an

a1
+ an

an+1

est entier. C’est avec cette hypothèse, à savoir que an+1a1 | an+1(an+1 − an) + a1an pour tout

n ⩾ N , que nous allons travailler par la suite.

Cette hypothèse implique notamment que an+1 | a1an, ce qui implique que l’ensemble des facteurs
premiers divisant les termes de la suite (an) est fini.

Soit p un nombre premier. La relation de divisibilité implique

vp(a1) + vp(an+1) ⩽ vp(an+1(an+1 − an) + a1an).

C’est en voulant expliciter le terme de droite en fonction de vp(a1), vp(an) et vp(an+1) que l’on
aboutit à la disjonction de cas qui suit, et dans laquelle on pose αn = vp(an) et α = α1.

➢ Si αn ⩾ α, alors α ⩽ αn+1 ⩽ αn. Supposons d’abord que αn+1 < α ⩽ αn. Alors
vp(an+1(an+1 − an) + a1an) = 2αn+1 < α + αn+1, ce qui est absurde. D’autre part, si
α ⩽ αn < αn+1, alors vp(an+1(an+1 − an) + a1an) = α + αn < α + αn+1, également en
contradiction avec la relation ci-dessus.

Par récurrence immédiate, la suite (αk) est alors minorée et décroissante, donc, à partir
d’un certain rang Np, elle est constante.

➢ Si αn < α, alors αn+1 ⩾ αn. En effet, si on avait αn+1 < αn, alors vp(an+1(an+1 − an) +
a1an) = 2αn+1 < α+ αn+1, ce qui est en contradiction avec la relation de divisibilité.

Ainsi, si aucun indice n ne vérifie αn ⩾ α, ce qu’on est en droit de supposer au vu du
premier cas, la suite (αk) est croissante et majorée par α, donc, à partir d’un certain rang
Np, elle est constante.

Vu que l’ensemble P des facteurs premiers divisant un terme de la suite est fini, on peut prendre
M = max{Np, p ∈ P}. A partir de ce rang M , les suites vp(an) sont toutes constantes, ce qui veut
dire que (an) elle-même est constante.

Exercice 6. (China TST 2016) Soit c, d ⩾ 2 des entiers naturels. Soit (an) la suite définie par

a1 = c et an+1 = adn + c. Montrer que pour tout n ⩾ 2, il existe un nombre premier p tel que p | an
et p ne divise aucun des ai pour i = 1, . . . , n− 1.

Solution 6. On commence par examiner les propriétés de la suite. En posant P (X) = Xd + c,
cette suite satisfait a1 = P (0) et an+1 = P (an) = P (n)(0), où la notation P (n) désigne la n−ème
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itérée de P . Ainsi, puisque P est à coefficients entier, l’itération de la relation x− y | P (x)−P (y)
donne que pour tout n,

an = an − 0 | P (ℓ)(an)− P (ℓ)(0) = an+ℓ − aℓ.

En particulier, si d divise an et am, puisqu’on a an−m ≡ an mod am donc d divise an−m. Mais
on a aussi que si d | am et an−m, alors puisqu’on a an ≡ an−m mod am, on a déduit que d | an.
On déduit que PGCD(an, am) = PGCD(an, an−m) . Cette relation est suffisante pour enclencher

l’algorithme d’Euclide, qui implique que PGCD(an, am) = PGCD(aPGCD(n,m), a0) = aPGCD(n,m),
avec la convention que a0 = 0.

On n’a pas encore utilisé la forme particulière de P . On a la divisibilité raffinée suivante :

adn = P (an)− c = P (an)− P (0) | P (ℓ)(an)− P (ℓ)(0) = an+ℓ − aℓ.

On va conclure avec cette relation. Supposons par l’absurde que an ne possède aucun facteur
premier ne divisant pas a1 . . . an−1. Soit p un facteur premier quelconque de an. On dispose d’un
indice j, qu’on suppose minimal, tel que p | aj. Au vu de la minimalité de j et de la relation
PGCD(aj, an) = aPGCD(n,j), on déduit que j | n. On a alors, du fait de la relation précédente,
an ≡ aj mod adj et en particulier, an ≡ aj mod pdvp(aj). On déduit que vp(an) = vp(aj).

Comme vp(an) ∈ {vp(an−1), vp(an−2), . . . , vp(a1)} pour tout p, on déduit que an < a1 . . . an−1. Mais
une récurrence immédiate prouve l’inégalité contraire, ce qui prouve que an admet au moins un
nombre premier qui ne divise aucun des termes précédents de la suite.

Exercice 7. (Dutch BXMO TST 2019) Existe-t-il un entier k ⩾ 1 et une suite non constante

a1, a2, . . . telle que an = PGCD(an+k, an+k+1) pour tout indice n ⩾ 1.

Solution 7. Pour comprendre l’exercice, il est essentiel de comprendre les cas k = 2 et k = 3.
Ces cas mettent en lumière la stratégie à adopter : on va montrer que an | an+1 pour tout n. Cela
implique d’abord que la suite est croissante, mais aussi que an = PGCD(an+k, an+k+1) = an+k,
donc la suite est croissante et périodique, elle est donc constante.

Puisque an | an+k et an | an+k+1 pour tout indice n, on a par récurrence que an | an+ak+b(k+1) pour

toute paire d’entiers positifs (a, b). Pour montrer que an | an+1, il suffit de montrer que an divise
an+k+1 et an+k+2. La première divisibilité vient de la relation de l’énoncé, on montre désormais
la deuxième divisibilité. On a an | an+k2 et an | an+(k−1)(k+1), donc an | PGCD(an+k2 , an+k2−1) =
an+k2−k−1. On montre alors par récurrence descendante sur r que an | an+k+2+(k+1)r. C’est déjà le cas
pour r = k−2. On suppose que c’est le cas pour un certain r ⩽ k−2. On a donc an | an+k+2+(k+1)r et
an | an+(k+1)(r+1), donc an | PGCD(an+(k+1)(r+1), an+k+2+(k+1)r) = an+(k+1)r−k = an+k+2+(k+1)(r−1).
Ceci achève la récurrence. En particulier, pour r = 0, on trouve an | an+k+2, donc an | an+1, ce qui
nous permet de conclure.
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