PREPARATION OLYMPIQUE FRANCAISE DE
MATHEMATIQUES

MATHEMATIQUES

ENVOI 2 : ALGEBRE
A TELEVERSER AU PLUS TARD LE 27 DECEMBRE 2025

Les consignes suivantes sont a lire attentivement :

- Le groupe senior est constitué des éleves nés en 2010 ou avant, ou €tant en terminale. Les autres
éleves sont dans le groupe junior.

- Les exercices classés “Juniors” ne sont a chercher que par les éleves du groupe junior.

- Les exercices classés “Seniors” ne sont a chercher que par les éleves du groupe senior.

- Les exercices doivent étre cherchés de maniere individuelle.
- Utiliser des feuilles différentes pour des exercices différents.

- Respecter la numérotation des exercices.

- Bien préciser votre nom en lettres capitales, et votre prénom en minuscules sur chaque copie.



Exercices Juniors

. . c . . I 1
f?gercwe 1. Soit x ety deux réels strictement positifs. Montrer que — + — > 3 — xy.
Xy

f?(ercice 2. Soit a,b, ¢ > 3 des réels. Montrer que abc > 3(a+ b + ¢).

f?gercice 3. Soit x,y, z des réels strictement positifs. Trouver la valeur minimale que peut prendre

I’expression
X2 y? 22

Kttty Wiyt ZiyziN

f{ercice 4. Soit x et y deux entiers strictement positifs tels que

VX VY — VX — Yy =2,

Montrer que x est le carré d’un entier.

. . , . e e 1 1 1
Z:xerace 5. Soit a, b, ¢ des réels strictement positifs distincts tels que — + — + — = 3. Montrer que
c

a?—b? b2 —c? c?—a’

a3 — b3 b3 —¢3 CS_a3<2'

Z:xercice 6. Soit a, b, c des réels tels que :
a+b+4+c=2
a?+b*+c? =2
Peut-on avoir alafois |a —b| < 1,[b—c| < letlc—a|<1?
f?(ercice 7. Soit S un ensemble de n réels positifs distincts. Montrer qu’il existe x,y € S tels que

xy+2y+1>n

y—x
f?gercice 8. Soit aj, as,...,a, des réels strictement positifs. Soit s = a; + as + ... + an, et
P = a;as---a,. Montrer que
2 n
n s s S
. < Z 4z i
VP S ld gt

Z:;Cercice 9. Soitx; < x9 < ... < Xy, des réels strictement positifs tels que I’on ait les deux égalités

X1+ X+ ... +xp =4n,

1 1 1
—+—+...+—=mn.
X1 X9 Xn

X
Montrer que x_n > 7+ 4V3.
1



Exercices Seniors

Z:;Cercice 10. Soit a, b, c > 3 des réels. Montrer que abc > 3(a + b + ¢).

f?(ercice 11. Soit aq, as, ... une suite de réels définie par ap = 1, a; = a > 1, et, pour tout n > 0,
Ani2 = Anyi1(aner — 1) —an(a, —2).
Montrer que a,, = 1 pour toutn > 0.

f{ercice 12. Soit0 < a < b < ¢ < d quatre réels tels que ad > bc. Montrer que a +d > b +c.

Z:xercice 13. Trouver toutes les fonctions f : R — R vérifiant pour tous x,y € R :

f(xf(y) —y*) = (y + Df(x —y).

f?gercice 14. Rémi choisit une suite a;, as, ... d’entiers strictement positifs. Il définit ensuite la suite
b1, bs, ... de réels par, pour toutn > 1,

a1a2...an
C11+C12+"'—|—C1n'

bn =

Il remarque alors que parmi un million de termes consécutifs de la suite (b, ), il en existe toujours au
moins un qui est entier.

Montrer que 1’un des termes de la suite (b, ) est supérieur ou égal a 202522,

f{ercice 15. Glustave écrit 2025 polyndmes unitaires de degré 2025 au tableau. Tous ces polyndmes
sont a coefficients réels positifs. A chaque minute, il choisit deux polyndmes f et g écrits au tableau, et
les remplace par deux polyndmes unitaires f; et g;, tous deux de degré 2025, tels que f;1 +g; = f+gou
f191 = fg

Est-il possible qu’au bout d’un certain temps, chacun des polyndmes écrits ait 2025 racines réelles stric-
tement positives ?

f?gercice 16. Trouver toutes les fonctions f : R} — R telles que pour tous x,y > 0,

f(x + f(y)) =yf(xy + 1).

Z}(ercice 17. Soit n un entier strictement positif. Trouver la plus grande constante M telle que, pour
tout polyndéme P € R[X] de degré au plus n — 1,

D (=P =M

i=0

f?(ercice 18. Soit ay, as, . . . une suite strictement croissante de réels positifs et inférieurs ou égaux a 1.
Montrer qu’il existe un réel apparaissant exactement une fois dans la suite

a; az as

T



Solutions Juniors

Solution de I'exercice 1
Cette inégalité est équivalente a % + % +xy = 3. Or, par IAG,

1 1 S 3 5
-+ —+xy = C— Xy =3,
Xy Y Y

X |~
| —

<«

ce qui conclut.



Solution de l’exercice 2

Essayons de comparer abc a chacun des trois termes séparément.

Pour comparer abc a 3a, on souhaite se débarasser du b et du ¢ dans le produit. Pour cela, on peut
simplement les minorer tous les deux par 3 :

abc > a-3-3=9a.

De méme, on obtient
abc > 9b

et
abc > 9c.

Il ne reste plus qu’a additionner ces trois expressions :
abc + abc 4+ abc > 9a + 9b + 9¢
On obtient alors I’inégalité voulue en divisant par 3.

Solution alternative de I’exercice 2
Supposons sans perte de généralité que a soit le plus grand des trois nombres. En minorant b et ¢ par 3
dans le membre de gauche, on obtient :

abc >9a=3a+3a+3a>3(a+b+c),

puisque I’on a supposé que a > beta > c.



Solution de l’exercice 3
On applique I'inégalité des mauvais éleves :

x2 y? z (x +y +2)°

+ + >

(x+z)(x+y) (Y+x)ly+z) (z+y)llz+x)~ x*+y?+2z°+3(xy +yz + zx)
X+ yP 427+ 2(xy +yz + 2x)
X2 4+y2+ 22+ 3(xy +yz+zx)’

Six =y =z, ontrouve M = %. On est donc tentés de montrer que M > %. Pour cela, il suffit de prouver
que

A +y* + 22+ 2(xy + yz + 2x)) = 3(x* +y* +2° + 3(xy + yz + zx)).
Cette derniere inégalité est équivalente a x* + y* + z* > xy + yz + zx, ce qui est bien connu (cette
inégalité est équivalente 2 (x —y)* + (y —z)® + (z — x)? > 0).
Réciproquement, en choisissant x =y = z = 1, on obtient bien M = %, donc cette valeur est atteinte.

Solution alternative de I’exercice 3 :
En ramenant au méme dénominateur et en développant, on obtient :

32 y? 22
M= —+ +
(x+z)(x+y) (Y+z)(y+x) (z+y)lz+x)
XY+ +yix+z2)+22x+y) | Py+xiz+yix+yiz+22x + 2%y
B (x+y)ly +2)(z+x) X2y + X2z +y2x +y2z + 2% + 22y + 2xyz’

Or, par I'inégalité arithmético-géométrique,

1
E(XQIJ +x% 24+ yx +ylz 4+ 22x + 2%Y) > VX% - x2z-y2x - y2z - 22x - 22y = o/x0y0z0 = xyz.
D’ou

- x*y + x?z + y*x + y*z + 2%x + 2%y 1 3
T XY+ xz+yx +ylz+22x + 22y + 20 Ly + X2z + Y +y2z+ 22x 4+ z%y)  1+5 0 4

Réciproquement, en choisissant x =y = z = 1, on obtient bien M = %, donc cette valeur est atteinte.



Solution de l’exercice 4
Mettons plusieurs fois au carré 1’égalité pour simplifier I’expression :

VR VI — V- v =2 WﬁWﬁ—Jﬁ—wy)Z:zx

VR VT =2/ VRV VR VB VR VT =4

=2vx — 2/ (VA + VB (VX — v3) = 4

VX —Vx—y =2

= (Vi—vi—y) =4
=x—2¢/x(x—y)+(x—y) =4

=(2x —y —4)? = 4x(x —y)

=4x? +y? + 16 — dxy — 16x + 8y = 4x* — 4xy
=y + 8y + 16 = 16x

=16x = (y +4)%

Ces deux nombres sont pairs, donc y + 4 est pair. On peut alors écrire y + 4 = 2a, avec a entier. On a
alors 4x = a. De méme, ces deux nombres sont pairs donc a est pair. On peut donc écrire a = 2b, avec
b entier. On a enfin x = b?, donc x est bien le carré d’un entier.



Solution de l’exercice 5
On peut factoriser le numérateur et le dénominateur de chaque fraction, sachant que

a’—b’=(a—b)(a+b)eta®—b?=(a—Db)(a®+ ab + b?).
Ainsi, la somme vaut aussi

a+b n b+c n a+c
a?4+ab+b2 b24+bc+c2 a?+ac+c?

On essaie maintenant de simplifier les dénominateurs, qui ne sont pas tres agréables. Le premier réflexe
est d’appliquer I'lAG :
a’?+ ab+b% > ab + 2ab = 3ab.

Ainsi, le membre de gauche est inférieur ou égal a

a+b+b+c+a+c_2 l+l+1 _y
3ab 3bc 3ac 3\a b ¢/ 7

On cherche maintenant a montrer que 1’égalité ne peut étre atteinte. Lorsque 1’on applique I'IAG, I’égalité
alieusia =b,b = cetc = a.Or, I’énoncé exclut explicitement ces égalités, donc 1’inégalité est bien
stricte.




Solution de Iexercice 6

Dans un premier temps, on cherche a donner un sens aux valeurs absolues des différences. Pour cela,
I’idée la plus naturelle est d’ordonner les trois nombres. Ca tombe bien, I’énoncé est symétrique, on peut
supposera > b > c.Soitd =a—bete=Db —c.

On va maintenant essayer d’utiliser les conditions de 1’énoncé. Pour passer des valeurs absolues a une
expression symétrique en a, b, c qu’on maitrise mieux, on peut regarder les carrés de ces trois valeurs
absolues :

(a—b)?+(b—c)?’+(c—a)®> =2(a®+b*+c? —ab—bc—ca) =3(a®>+b%+c?)—(a+b+c)? =2
et d’un autre cOté,
(a=b)’+(b—c)P’+(c—a)’=d’+e+(d+e)’ < (d+e)’+(d+e)*=2(d+e)

Ainsi, 2(d + e)? > 2, donc |a — ¢| > 1, ce qui conclut.



Solution de l'exercice 7
+2y+

On cherche tout d’abord a transformer la quantité &ﬁ, que I’on notera S(x,y) par la suite, pour

obtenir quelque chose de plus joli. En essayant de rendre le numérateur symétrique en x et y, on se rend
xy+2y+1 y—x xy+x+y+l

y—x y—x y—x
xy+x+y+1= (x+1)(y+1), ce qui nous pousse a passer I’égalité () a I’inverse : on obtient, pourvu
que S(x,y) # —1,

compte que S(x,y) —1 = (*). On remarque ensuite que

1 B y—x _y+)—(x+1 1 1
Sx,y)—1  (x+1y+1)  (x+1y+1) x+1 y+1
Sous cette forme, nous pouvons a présent appliquer le principe des tiroirs : on note Xi,Xs, ..., Xy les
1

n éléments (distincts) de S, et on considere les n fractions Les x; étant

x1+1 x+1""" "x,+1

< 1. Cela nous pousse a considérer les n — 1 intervalles ]0 L]

'n—1

positifs, on a, pour tout i, 0 <
Xq

]ﬁ, %], . ,]K—j, 1] qui partitionnent ]0, 1] en guise de tiroirs. D’apres le principe des tiroirs, il existe

deux indices i # j tels que et soient dans le méme intervalle de longueur %1 avec sans
Xi + 1 X5 +1 n
L, 1 1
perte de généralité > . On a alors
Xi + 1 X5 +1

1 L1
S(xi,xj)—1 xi+1 x+1 n—1

ou encore S(xi,%;) > n en passant a I’inverse. Cela conclut I’exercice : les éléments x; et x; de S
conviennent.

10



Solution de 'exercice 8

On a envie de donner un peu de sens aux termes de la forme % Le k! fait penser aux permutations de k
nombres. Et justement, quand on développe s, on remarque que pour tous 1 < i; < iy < ... < i < M,
le terme ay, ai,...a;, apparait k! fois. En effet, chaque permutation de aj,, ai,, ..., a;, apparait une fois
dans le développement de (a; + ... + a,)*. On a donc

Sk
—'2 Z i, - i, ... A4
1<11<12<...<ik<n
Ainsi,
2 g™ n
1+S+§+---+E>Z Z Qi - Ay

k=0 aij<iz2<...<ixn

Or, dans le terme de droite, on reconnait le développement de (1 + a;)(1 + az)...(1 + an ). Pour tout 1i,
on a par IAG 1 + a; > 2y/a;, donc

(1+ @) (14 an) = 20/@ - 20/@s - ... - 20/an = 2"/

D’apres les deux inégalités précédentes, on a bien

82

1
+s+ 5

Sn
+ ...+ g = 211\/5,

ce qui conclut.

Solution Alternative de [’exercice 8
L’inégalité arithmético-géométrique nous donne la valeur minimale de s a p fixé :

1
s Znpn.

L’exercice revient donc a montrer que, pour tout p > 0,

3=

nkp

VRS
k=0 )

Les factorielles qui apparaissent au dénominateur nous incitent a essayer de faire apparaitre des coeffi-
cients binomiaux. On utilise donc la majoration suivante :

vk, n*>n-m—1)----- (n—k+1).

Cela nous permet d’écrire, par bindbme de Newton :

" nkpn S nn—1)...(n—k+1)p= " nlps
Z K! 22 K :Z(n_k)lkl
k=0 k=0 k=0
= (k) 1 n
N (n)pn =l
k=0

Pour conclure, il nous suffit de remarquer que, par IAG,

(pi+1)“>(2 pi> =" /P

11



Solution de l'exercice 9 Une premiére difficulté dans ce probléme est d’aboutir a une inégalité portant
sur deux termes spécifiques, a savoir x,, et X1, a partir d’hypotheses symétriques en toutes les variables.
Une bonne idée pour pallier a ce probleme est d’établir, pour chaque terme, une inégalité impliquant x,,
X et ce terme particulier, puis de sommer ces inégalités afin d’utiliser les hypotheses de 1’énoncé.

Puisque les x; sont rangés dans 1’ordre croissant, on a, pour tout i > 1, (x; — x1)(xi — xn) < 0. En
sommant cette inégalité sur tous les 1, on obtient

fo — (1 +xn) in + nxnx; <0,

ce qui semble difficile & manipuler puisque I’on a pas d’information sur la somme des x?. Ainsi, on
modifie 1égerement I’inégalité établie, que 1’on écrit sous la forme

Xi Xi

X1Xn

En sommant cette inégalité sur tous les i € {1,2,...,n}, on obtient

n
Z x1+xn)+x1an—

ou encore 0 > 4n — n(x; + X, ) + nxy X, en utilisant les conditions de 1’énoncé. En divisant par n et en
notant t = 2 > 1, on trouve
X1

0>4—x(1+1t)+x3t.

On reconnait l1a une équation du second degré en la variable x;, dont le discriminant est nécessairement
positif, sans quoi la quantité 4 — x; (1 + t) + x3t serait toujours strictement positive. Ainsi,

0< (14 t)2—16t = t2—14t+1, ou encore 48 < (t—7)2. En passant 2 la racine, on trouve 4y/3 < t—7
ou —4v/3 > t — 7. Ce second cas est impossible puisque t > 1. Ainsi, t > 7 + 4+/3, comme attendu.
Cela conclut.

12



Solutions Seniors

Solution de l'exercice 10

Essayons de comparer abc a chacun des trois termes séparément.

Pour comparer a abc a 3a, on souhaite se débarasser du b et du ¢ dans le produit. Pour cela, on peut
simplement les minorer tous les deux par 3 :

abc>a-3-3=9a

De méme, on obtient
abc > 9b

et
abc > 9c

Il ne reste plus qu’a additionner ces trois expressions :
abc + abc + abc > 9a + 9b + 9¢

On obtient alors I’inégalité voulue en divisant par 3.

13



Solution de l’exercice 11

Si I’on calcule les premiers termes de la suite pour certaines valeurs de a, on remarque que celle-ci
semble croissante. C’est ce qu’on va montrer en toute généralité.

Montrons donc par récurrence sur n que a, > an_1 = 0n_2 = ... = Qg pour toutn > 1.

Initialisation : Pour n = 1, on a bien d’apres 1’énoncé a; = a > ay.

Hérédité : Soit m > 1. Supposons que a,, > a,_1 = an_2 = ... > 4y, Montrons que a, 1 => Qan.

On a, d’apres la relation de 1’énoncé,

An+1 = an(an - 1) - an—l(an—l - 2)7

donc
An+1 — Qn = an(an - 2) - anfl(anfl - 2) = (an - 1)2 - (anfl - 1)2

Or, a, > an_; = ap = 1 par hypothése de récurrence, donc a, —1 > a,_; —1 > 0Oet (a, — 1) >
(an_1 — 1)% Ainsi, any; — an > 0,donc any = apn = an_q > ... = do, ce qui achéve la récurrence.
Ainsi, la suite est croissante. Comme le premier terme vaut 1, a fortiori chaque terme de la suite est
supérieur ou égal a 1.

Solution Alternative de ’exercice 11

Montrer que a,, = 1 pour tout n > 0 revient a montrer que a,, — 1 > 0 pour tout n > 0. Cette remarque,
ainsi que la présence du 1 dans la condition de 1’énoncé, nous incite a introduire la suite auxiliaire b,
définie pour toutn > 0 par b,, = a,, — 1.

L’hypothese de I’énoncé se réécrit alors, pour toutn > 0 :

bnio =bnir + biﬂ - bi-

On montre alors par récurrence, comme dans la premiere solution, que pour tout n > 0, by, 1 > by,
donc pour toutn > 0, b, > by = 0.

14



Solution de l’exercice 12

On va essayer de forcer 1’apparition de factorisations pour transformer le produit en une somme. Pour
cela, on ajoute un terme des deux cotés de I'inégalité, qui permette de factoriser les deux termes. On a
cd—ad <cd—be,donc (c—a)d < (d—Db)c.

Cette expression semble plus agréable car on veut justement montrer que ¢ — a < d — b. On cherche
maintenant a se débarasser du d en facteur a gauche et du c en facteur a droite.

On aen fait (d —b)c < (d—Db)d. Ainsi, (c—a)d < (d—b)d, donc ¢ —a < d — b (on peut diviser par
dcard > 0), et on obtient bienc +b < a + d.

15



Solution de 'exercice 13

On commence par poser y = —1 pour faire disparaitre le membre de droite. On obtient f(xf(—1)—1) = 0
pour tout x. En particulier, x = 0 donne f(—1) = 0.

Cherchons les zéros de f. Soit y, un réel tel que f(yo) = 0. Alors

f(—y3) = (yo + )f(x — yo).

f (—y3)
Yo+1
f(—1) = 0. Sinon, —1 est le seul zéro de f. Mais alors en posanty = x-+1, on obtient f (xf(x + 1) — (x + 1)?) =
0, d’ou

Si I’on dispose d’un tel yo # —1, alors f est constante €gale a , donc identiquement nulle car

xf(x+1)—(x+1)*=-1

En simplifiant par x lorsqu’il est non nul, on en déduit que pour tout z # 1, f(z) = z + 1. Enfin, on pose
x = 3 ety = 2 dans I’équation initiale, ce qui donne f(3f(2) — 4) = 3f(1) soit f(1) = 2.
Réciproquement, la fonction x — x + 1 ainsi que la fonction nulle sont bien solutions.

16



Solution de l'exercice 14 Soit M = 2025%°%5 et N = 1000000. II s’agit de démontrer qu’au moins un
terme de la suite (b,,) est supérieur ou égal a M. On sépare deux cas :

Cas1: Ilexisteunentieritelque a; = ai;1 =... = Qi mN_1 = 1.
Remarquons tout d’abord que pour n’importe quel indice n, si a,, = 1, alors
a;as...0Aan ajads...AaAn—1

" A tasd... ta, aqtast+...ta,,+1 o

Ainsi, on a les inégalités
bi >...>biimnr (K

Cependant, parmi ces MN éléments de la suite (b,,), au moins M sont entiers. En effet, pour chaque
k € [0; M — 1], au moins un des termes de la suite (b,,) parmi les indices [i + kN, 1+ (k + 1)N — 1]
est un entier. Par construction, ces M entiers sont strictement positifs. Par ailleurs, au vu de (x), ils sont
distincts deux-a-deux. Le plus grand d’entre eux est donc supérieur ou €gal a M, comme voulu.

Cas 2 : Parmi MN termes consécutifs de la suite (a,, ), il y en a toujours au moins 1 qui est supérieur ou
égal a 2.
Dans ce cas, on remarque que, pour tout entier naturel k, on a

KMN
1 _a1+a2+...+akMN_ 1
bkMN a;as...axMN o1 Hﬁéi Clj
Parmi les termes a4, as, . . ., axmN, au moins k sont supérieurs ou égaux a 2 par hypothese. Il en découle

que chacun des kMN dénominateurs de la somme de droite contient au moins k — 1 termes supérieurs
ou égaux 2 2 et est donc supérieur ou égal a 2¢~!. Ainsi, on a

1 kMN

< 2k—1 ’

brmn

On applique cette inégalité 2 k = 2M2N + 2, de sorte que k* > 2kM?2N + k puis ¥=X+2 > kM?N,
Ensuite, d’apres le bindme de Newton,

k—1
k—1 k—1 k—1 k? —k+2
2“:2( e )>1+< 1 )+< 2 ):T+>kM2N’

£=0

2k71
kMN

Puis bywn = > M. Cela conclut le deuxiéme cas et termine 1’exercice.

17



Solution de l’exercice 15

Clairement 2025 ne joue aucun rdle (sauf peut-€tre pour sa parité), on pose donc n = 2025. La téte du
probléme nous donne tres envie de chercher un invariant. Le probleme est qu’il va nous falloir un inva-
riant qui prouve qu’un polyndome ne peut pas avoir que des racines strictement positives, ce qui semble
audacieux.

Une premicere chose claire est que les transformations autorisées par I’énoncé vont mal se comporter avec
les racines (il est impossible d’exprimer les racines de f; et g; en fonction de celles de f et g). Alors, si
I’invariant ne peut pas porter sur les racines, il ne peut porter que sur les coefficients des polyndmes.

En effet, si I’on trouve un invariant sur les coefficients des polyndmes, les relations de Viete nous per-
mettront de trouver une propriété sur les racines afin d’aboutir a une contradiction si elles sont toutes
strictement positives.

Tout cela est bien beau, mais il nous manque toujours I’invariant. Pour le trouver, analysons plus en détail
I’énoncé. 1l précise que tous les polyndmes sont unitaires, ce qui semble nous inciter a nous intéresser
aux coefficients de haut degré plutot qu’a ceux de bas degré.

Pour avancer, le plus simple est d’écrire les égalités entre f, g, f1, g; en fonction de leurs coefficients.
Posons donc

f=ag+ X+ ..+an X" H4X"

g=Dbo+b X+ .. +b X4+ X"

fi=uy+ WX+ ... Fup X4 X"

g1 =vo+wnX+ . v XX
Onaalors f + g = f; + g1+ ou fg = f;g;, ce qui s’écrit

(ag+bg) + (a1 +b1)X + ... + (An_1 + b )X 42X
= (up +vo) + (g +v) X+ oo+ (Unog + v )X F2X"

ou bien

aobg + (agb1 + ar1bg)X + ... 4 (@n_1 + by ) X714 X
= Uy + (Uovi + uvo) X + oo+ (Unog + Vi) X2V 4 X320

Or, si I’on regarde le coefficient devant X™ ! dans le premier cas et le coefficient devant X?™ 1 dans le
second cas, on remarque qu’on a toujours a1 + b1 =Un_1 + V1!

On tient maintenant notre invariant : d’apres la remarque précédente, la somme des coefficients devant
X™"~1 des polyndmes est invariante.

Au début, cette somme est positive car tous les coefficients des polyndmes sont positifs.

Ainsi, cette somme est toujours positive. A fortiori, il existe toujours un polyndme dont le coefficient
devant X>™ ! est positif. Or, d’apres les relations de Viete, le polyndme étant unitaire, ce coefficient est
égal a I’opposé de la somme des racines du polnydme. Si toutes ces racines sont strictement positives,
alors I’opposé de leur somme est strictement négatif, ce qui est contradictoire.

Ainsi, il existe, a chaque instant, au moins un polyndme qui n’a pas que des racines strictement positives,
ce qui conclut.
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Solution de l'exercice 16
On devine que la solution est la fonction inverse, qui convient bien.

fly) —1
y—1"°

a condition que y # 1 et que cette fraction soit strictement positive. Si c’est le cas, en divisant des deux

cOtés par les f() rendus égaux on aboutit directement a y = 1, ce qui contredit notre hypothése. On en

f —1
(y)—l < 0, autrement dit siy < 1, alors f(y) > 1 et inversement.
—1
, ce qui donne f (1‘,7 + f(y)) = yf(y). Mais alors si

On cherche a faire une substitution telle que x + f(y) = xy + 1. C’est possible en posant x =

déduit que

Supposons que y > 1. On pose x = Y

1 —1 —1
f(y) < 13’ alors yf(y) < 1, donc f (yT + f(y)) < 1, donc Y ”

. N A . ) 1
contredit notre hypothese. Le méme raisonnement montre que I’on ne peut pas non plus avoir f(y) > —,
Y

1
+ f(y) > 1, soit f(y) > ™ ce qui

1
donc finalement, f(y) = — pour touty > 1.

Revenons a I’équation de départ. Comme xy + 1 > 1, on peut écrire, pour touty > 1 :

xy+1Y) l B B .y
f( y )-f(x+y)—f(x+f(y))—yf(xy+1)_xy+1

En prenant x suffisamment petit et y suffisamment grand, on peut atteindre tous les réels de ]0, 1] avec

z 2
= x + —. Pour z €]0, 1], cela se fait explicitement en posant x = 5 ety = — par
z

b 3 X
I’expression

exemple. Finalement, la seule solution est bien la fonction inverse.
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(n1)?

(W)

Dans cet exercice, nous nous intéressons aux valeurs que prend un polyndme de degré au plus 1 — 1 en
n + 1 points. Cela nous fait penser a I'interpolation de Lagrange : une premiere idée est d’essayer de
rendre M nul, en prenant par exemple P(i) = i™ pour 0 < i < n. Cependant, le polyndme interpolateur
de ces n + 1 points est de degré . et non de degré au plus n — 1.

Fixons désormais un polyndome P de degré au plus n — 1. Nous savons que si I’on note, pour chaque
0 < i < n, q; la quantité i™ — P(i), 'unique polyndme de degré au plus n vérifiant P(i) = i™ — q;
pour chaque 0 < 1 < n est de degré au plus n — 1. Cela nous donnera une condition sur les i — ¢, eta
fortiori sur les ;. On écrit I’égalité

PX)=)_ ((in —q) ] >1<—_)]> :

i=0 j#1

Solution de l'exercice 17 Montrons que la constante recherchée est M =

En effet, ces 2 polyndmes sont de degré au plus n et coincident en n + 1 points : ils sont donc égaux.
Le polynéme P étant de degré au plus n — 1, nous savons que le coefficient devant X™ dans 1’expression
du membre de droite est nulle. Cela s’écrit

0= ;ql (1).

De plus, remarquons que 1’on a I’égalité polynomiale

n

n s X—j
X 221 H i—j]'

i=0  j#£i

En effet, ce sont deux polyndmes de degré au plus n qui coincident en n 4 1 points : 0, 1, ..., n. En
égalant les coefficients devant X™, il vient

En combinant les égalités (1) et (2), on trouve

n qi
;H#il_J

Pour tout i, on a Hj Li(i—j) = (—1)™ '!(n —1i)!. On peut faire apparaitre des coefficients binomiaux
en multipliant 1’égalité ci-dessus par n! :

nl = Z(—l)“iqi(?). (*)

i=0

Nous pouvons maintenant appliquer 1’inégalité de Cauchy-Schwarz et obtenir

(% q?) (:0 (?>2> > <§(—1)“_iqi<?)>2 — (.
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D’ou, finalement,

o . (n!)? (n!)2
(i —PH))? > = s
; Z?:O (?)2 (2n)

ou la derniere égalité découle d’un double comptage classique pour dénombrer le nombre de manieres de

construire un sous-ensemble a n éléments de {1,2, ..., 2n}. Réciproquement, si I’on pose, pour chaque
—1) (M)t
i gy = # ils vérifient I"égalité (+) et le cas d’égalité de Cauchy-Schwarz. De plus, I’égalité

n
(*) est équivalente a 1’égalité (1), elle-méme équivalente au fait que le polyndme P de degré au plus n
vérifiant P(1) =i™ — q; pour i = 0, ..., 1 soit bien de degré au plus n — 1.
Cela montre bien que M est atteignable, et donc que M est bel et bien la constante recherchée.
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Solution de I'exercice 18 Supposons par 1’absurde que pour tout i, il existe j # i tel que ¢ = % En
particulier, a; > 0, sinon la valeur 0 ne serait prise qu’une seule fois. On remarque tout d’abord que pour
tout réel r, un indice i vérifiant % = r doit vérifier 1 > a; = ir, ou encore i < % En particulier, il n’y a
qu’un nombre fini de tels indices 1. Par la suite, on dira qu’un indice 1 est bleu s’il existe un indice j > i

: aj . N s s . . . . . . .
avec 5t = 5 et rouge sinon. D’apres la remarque précédente, pour tout indice bleu 1, il existe un indice

rouge j vérifiant ¢ = % De plus, il existe une infinité d’indices bleus, puisqu’il existe une infinité de
valeurs prises par la suite (') (celle-ci prenant des valeurs strictement positives arbitrairement petites).
On définit maintenant deux sultes d’indices strictement croissantes (ix) et (ji ), I'une entierement bleue
et I’autre entierement rouge, par récurrence :

> On pose 1; = 1, qui est effectivement bleu, puis on définit j; > 1 comme étant le plus grand indice
vérifiant % = 9%, qui est rouge par définition.

> Ensuite, une fois i, 1s,...,1n €t j1,J2,...,]Jn définis pour un certain n > 1, on définit i,,,; comme
étant le plus petit indice bleu supérieur a j,,, puis j,, 11 comme étant 1’indice rouge vérifiant ﬁ = al%:
Pour tout indice k, on pose également X = ji — ix.

Soit m > 1 un entier. Les intervalles de la forme [jy,ixy1 — 1], ot 1 < k < n — 1, sont disjoints

et leur union est incluse dans [1,1,, — 1] par construction. De plus, les éléments de ces intervalles sont
exclusivement rouges. On en déduit que, parmi les indices de 1 a i,, — 1, au moins

n—1 n—1
E ik+1—jk:in—1—§ Xk
k=1 k=1

sont rouges. Cependant, a chaque indice rouge r de I'intervalle [1,1,, — 1], on peut associer un indice

s LE4 o) ar b . T .
bleu différent b vérifiant — = > et b < 1. Ainsi, le nombre d’indices rouges dans cet intervalle
T
n—1 .
in—1 . N ) 1a—1
vaut au plus . En combinant ces deux dernieres remarques, on obtient E Xk = 5 ou encore
k=1

<1425 Ml

Remarquons enfin que pour tout entier k > 1, on a a;, — a;, < aj, — aj,_, (oul’on pose jo = 0 et
ap = 0). De plus, on a “ = ’k , de sorte que

a;, Xk a1 Xx a1 Xk
aj, — ay, = R = :
% % 1+2Y ' x
Soit n > 1 un entier. En sommant ces deux inégalités pour k = 1,2,...,n, et en faisant apparaitre une

somme télescopique, on trouve

a; Xk
> aj,, = z a]k Ajpy z a)k alk = _z :
+ Zl 1 Xi

k=1 2

Notons L le membre de droite. On remarque que

_ﬂn ﬂn +Z 1 X
L= Z+Z _QZ—-JrZ 1],

k=1 2 1Xi 1 Xi

d’ou, par IAG en faisant apparaitre un produit télescopique,




d’ot l'on tire L > =3+ ({‘/T_L — 1) en utilisant simplement I'inégalité x; > 1 pour tout i. Finale-
ment, en notant A = {/n et en se rappelant I’inégalité 1 > L obtenue précédemment, on obtient
1> =0 <\“/T_1 — 1). Divers arguments de nature analytique permettent de montrer que cette inégalité
est fausse pour n assez grand, ce qui constitue la contradiction recherchée. Une maniere d’établir cette
absurdité est de se rappeler I’inégalité (1 + %)X < e, vraie pour tout réel x > 0, ou e est la constante
d’Euler. Ainsi, si k > a% estunréeletn > e*, onan > e* > (1+ )", desorte que n (Yn—1) >k,

puis 2 ({/n—1) > X8 > 1, absurde. Cela conclut la preuve de I’exercice.
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