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ENVOI 2 : ALGÈBRE
À TÉLÉVERSER AU PLUS TARD LE 27 DÉCEMBRE 2025

Les consignes suivantes sont à lire attentivement :

- Le groupe senior est constitué des élèves nés en 2010 ou avant, ou étant en terminale. Les autres
élèves sont dans le groupe junior.

- Les exercices classés “Juniors” ne sont à chercher que par les élèves du groupe junior.

- Les exercices classés “Seniors” ne sont à chercher que par les élèves du groupe senior.

- Les exercices doivent être cherchés de manière individuelle.

- Utiliser des feuilles différentes pour des exercices différents.

- Respecter la numérotation des exercices.

- Bien préciser votre nom en lettres capitales, et votre prénom en minuscules sur chaque copie.
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Exercices Juniors

Exercice 1. Soit x et y deux réels strictement positifs. Montrer que
1

x
+

1

y
⩾ 3− xy.

Exercice 2. Soit a,b, c ⩾ 3 des réels. Montrer que abc ⩾ 3(a+ b+ c).

Exercice 3. Soit x,y, z des réels strictement positifs. Trouver la valeur minimale que peut prendre
l’expression

M =
x2

(x+ z)(x+ y)
+

y2

(y+ x)(y+ z)
+

z2

(z+ y)(z+ x)
.

Exercice 4. Soit x et y deux entiers strictement positifs tels que√√
x+

√
y−

√√
x−

√
y = 2.

Montrer que x est le carré d’un entier.

Exercice 5. Soit a,b, c des réels strictement positifs distincts tels que
1

a
+

1

b
+

1

c
= 3. Montrer que

a2 − b2

a3 − b3
+

b2 − c2

b3 − c3
+

c2 − a2

c3 − a3
< 2.

Exercice 6. Soit a,b, c des réels tels que :

a+ b+ c = 2,

a2 + b2 + c2 = 2.

Peut-on avoir à la fois |a− b| < 1, |b− c| < 1 et |c− a| < 1?

Exercice 7. Soit S un ensemble de n réels positifs distincts. Montrer qu’il existe x,y ∈ S tels que

xy+ 2y+ 1

y− x
> n.

Exercice 8. Soit a1,a2, . . . ,an des réels strictement positifs. Soit s = a1 + a2 + . . . + an, et
p = a1a2 · · ·an. Montrer que

2n ·
√
p ⩽ 1+

s

1!
+

s2

2!
+ . . .+

sn

n!
.

Exercice 9. Soit x1 ⩽ x2 ⩽ . . . ⩽ xn des réels strictement positifs tels que l’on ait les deux égalités

x1 + x2 + . . .+ xn = 4n,

1

x1
+

1

x2
+ . . .+

1

xn
= n.

Montrer que
xn

x1
⩾ 7+ 4

√
3.
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Exercices Seniors

Exercice 10. Soit a,b, c ⩾ 3 des réels. Montrer que abc ⩾ 3(a+ b+ c).

Exercice 11. Soit a1,a2, . . . une suite de réels définie par a0 = 1, a1 = a ⩾ 1, et, pour tout n ⩾ 0,

an+2 = an+1(an+1 − 1) − an(an − 2).

Montrer que an ⩾ 1 pour tout n ⩾ 0.

Exercice 12. Soit 0 < a < b < c < d quatre réels tels que ad ⩾ bc. Montrer que a+ d ⩾ b+ c.

Exercice 13. Trouver toutes les fonctions f : R → R vérifiant pour tous x,y ∈ R :

f(xf(y) − y2) = (y+ 1)f(x− y).

Exercice 14. Rémi choisit une suite a1,a2, . . . d’entiers strictement positifs. Il définit ensuite la suite
b1,b2, . . . de réels par, pour tout n ⩾ 1,

bn =
a1a2 · · ·an

a1 + a2 + · · ·+ an

.

Il remarque alors que parmi un million de termes consécutifs de la suite (bn), il en existe toujours au
moins un qui est entier.
Montrer que l’un des termes de la suite (bn) est supérieur ou égal à 20252025.

Exercice 15. Glustave écrit 2025 polynômes unitaires de degré 2025 au tableau. Tous ces polynômes
sont à coefficients réels positifs. A chaque minute, il choisit deux polynômes f et g écrits au tableau, et
les remplace par deux polynômes unitaires f1 et g1, tous deux de degré 2025, tels que f1 + g1 = f+ g ou
f1g1 = fg.
Est-il possible qu’au bout d’un certain temps, chacun des polynômes écrits ait 2025 racines réelles stric-
tement positives?

Exercice 16. Trouver toutes les fonctions f : R∗
+ → R∗

+ telles que pour tous x,y > 0,

f(x+ f(y)) = yf(xy+ 1).

Exercice 17. Soit n un entier strictement positif. Trouver la plus grande constante M telle que, pour
tout polynôme P ∈ R[X] de degré au plus n− 1,

n∑
i=0

(in − P(i))2 ⩾ M.

Exercice 18. Soit a1,a2, . . . une suite strictement croissante de réels positifs et inférieurs ou égaux à 1.
Montrer qu’il existe un réel apparaissant exactement une fois dans la suite

a1

1
,
a2

2
,
a3

3
, . . .
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Solutions Juniors

Solution de l’exercice 1
Cette inégalité est équivalente à 1

x
+ 1

y
+ xy ⩾ 3. Or, par IAG,

1

x
+

1

y
+ xy ⩾ 3 3

√
1

x
· 1
y
· xy = 3,

ce qui conclut.
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Solution de l’exercice 2
Essayons de comparer abc à chacun des trois termes séparément.
Pour comparer abc à 3a, on souhaite se débarasser du b et du c dans le produit. Pour cela, on peut
simplement les minorer tous les deux par 3 :

abc ⩾ a · 3 · 3 = 9a.

De même, on obtient
abc ⩾ 9b

et
abc ⩾ 9c.

Il ne reste plus qu’à additionner ces trois expressions :

abc+ abc+ abc ⩾ 9a+ 9b+ 9c

On obtient alors l’inégalité voulue en divisant par 3.

Solution alternative de l’exercice 2
Supposons sans perte de généralité que a soit le plus grand des trois nombres. En minorant b et c par 3
dans le membre de gauche, on obtient :

abc ⩾ 9a = 3a+ 3a+ 3a ⩾ 3(a+ b+ c),

puisque l’on a supposé que a ⩾ b et a ⩾ c.
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Solution de l’exercice 3
On applique l’inégalité des mauvais élèves :

x2

(x+ z)(x+ y)
+

y2

(y+ x)(y+ z)
+

z2

(z+ y)(z+ x)
⩾

(x+ y+ z)2

x2 + y2 + z2 + 3(xy+ yz+ zx)

=
x2 + y2 + z2 + 2(xy+ yz+ zx)

x2 + y2 + z2 + 3(xy+ yz+ zx)
.

Si x = y = z, on trouve M = 3
4
. On est donc tentés de montrer que M ⩾ 3

4
. Pour cela, il suffit de prouver

que
4(x2 + y2 + z2 + 2(xy+ yz+ zx)) ⩾ 3(x2 + y2 + z2 + 3(xy+ yz+ zx)).

Cette dernière inégalité est équivalente à x2 + y2 + z2 ⩾ xy + yz + zx, ce qui est bien connu (cette
inégalité est équivalente à (x− y)2 + (y− z)2 + (z− x)2 ⩾ 0).
Réciproquement, en choisissant x = y = z = 1, on obtient bien M = 3

4
, donc cette valeur est atteinte.

Solution alternative de l’exercice 3 :
En ramenant au même dénominateur et en développant, on obtient :

M =
x2

(x+ z)(x+ y)
+

y2

(y+ z)(y+ x)
+

z2

(z+ y)(z+ x)

=
x2(y+ z) + y2(x+ z) + z2(x+ y)

(x+ y)(y+ z)(z+ x)
=

x2y+ x2z+ y2x+ y2z+ z2x+ z2y

x2y+ x2z+ y2x+ y2z+ z2x+ z2y+ 2xyz
.

Or, par l’inégalité arithmético-géométrique,

1

6
(x2y+ x2z+ y2x+ y2z+ z2x+ z2y) ⩾ 6

√
x2y · x2z · y2x · y2z · z2x · z2y = 6

√
x6y6z6 = xyz.

D’où

M ⩾
x2y+ x2z+ y2x+ y2z+ z2x+ z2y

x2y+ x2z+ y2x+ y2z+ z2x+ z2y+ 2 · 1
6
(x2y+ x2z+ y2x+ y2z+ z2x+ z2y)

=
1

1+ 1
3

=
3

4
.

Réciproquement, en choisissant x = y = z = 1, on obtient bien M = 3
4
, donc cette valeur est atteinte.
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Solution de l’exercice 4
Mettons plusieurs fois au carré l’égalité pour simplifier l’expression :√√

x+
√
y−

√√
x−

√
y = 2 ⇒

(√√
x+

√
y−

√√
x−

√
y

)2

= 4

⇒
√
x+

√
y− 2

√√
x+

√
y ·
√√

x−
√
y+

√
x−

√
y = 4

⇒2
√
x− 2

√
(
√
x+

√
y)(

√
x−

√
y) = 4

⇒
√
x−

√
x− y = 2

⇒
(√

x−
√
x− y

)2
= 4

⇒x− 2
√
x(x− y) + (x− y) = 4

⇒(2x− y− 4)2 = 4x(x− y)

⇒4x2 + y2 + 16− 4xy− 16x+ 8y = 4x2 − 4xy

⇒y2 + 8y+ 16 = 16x

⇒16x = (y+ 4)2.

Ces deux nombres sont pairs, donc y + 4 est pair. On peut alors écrire y + 4 = 2a, avec a entier. On a
alors 4x = a2. De même, ces deux nombres sont pairs donc a est pair. On peut donc écrire a = 2b, avec
b entier. On a enfin x = b2, donc x est bien le carré d’un entier.
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Solution de l’exercice 5
On peut factoriser le numérateur et le dénominateur de chaque fraction, sachant que

a2 − b2 = (a− b)(a+ b) et a3 − b3 = (a− b)(a2 + ab+ b2).

Ainsi, la somme vaut aussi

a+ b

a2 + ab+ b2
+

b+ c

b2 + bc+ c2
+

a+ c

a2 + ac+ c2
.

On essaie maintenant de simplifier les dénominateurs, qui ne sont pas très agréables. Le premier réflexe
est d’appliquer l’IAG :

a2 + ab+ b2 ⩾ ab+ 2ab = 3ab.

Ainsi, le membre de gauche est inférieur ou égal à

a+ b

3ab
+

b+ c

3bc
+

a+ c

3ac
=

2

3

(
1

a
+

1

b
+

1

c

)
= 2.

On cherche maintenant à montrer que l’égalité ne peut être atteinte. Lorsque l’on applique l’IAG, l’égalité
a lieu si a = b, b = c et c = a. Or, l’énoncé exclut explicitement ces égalités, donc l’inégalité est bien
stricte.
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Solution de l’exercice 6
Dans un premier temps, on cherche à donner un sens aux valeurs absolues des différences. Pour cela,
l’idée la plus naturelle est d’ordonner les trois nombres. Ça tombe bien, l’énoncé est symétrique, on peut
supposer a ⩾ b ⩾ c. Soit d = a− b et e = b− c.
On va maintenant essayer d’utiliser les conditions de l’énoncé. Pour passer des valeurs absolues à une
expression symétrique en a,b, c qu’on maı̂trise mieux, on peut regarder les carrés de ces trois valeurs
absolues :

(a−b)2+(b− c)2+(c−a)2 = 2(a2+b2+ c2−ab−bc− ca) = 3(a2+b2+ c2)− (a+b+ c)2 = 2

et d’un autre côté,

(a− b)2 + (b− c)2 + (c− a)2 = d2 + e2 + (d+ e)2 ⩽ (d+ e)2 + (d+ e)2 = 2(d+ e)2.

Ainsi, 2(d+ e)2 ⩾ 2, donc |a− c| ⩾ 1, ce qui conclut.
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Solution de l’exercice 7
On cherche tout d’abord à transformer la quantité xy+2y+1

y−x
, que l’on notera S(x,y) par la suite, pour

obtenir quelque chose de plus joli. En essayant de rendre le numérateur symétrique en x et y, on se rend

compte que S(x,y) − 1 =
xy+ 2y+ 1

y− x
−

y− x

y− x
=

xy+ x+ y+ 1

y− x
(∗). On remarque ensuite que

xy+x+y+1 = (x+1)(y+1), ce qui nous pousse à passer l’égalité (∗) à l’inverse : on obtient, pourvu
que S(x,y) ̸= −1,

1

S(x,y) − 1
=

y− x

(x+ 1)(y+ 1)
=

(y+ 1) − (x+ 1)

(x+ 1)(y+ 1)
=

1

x+ 1
−

1

y+ 1
.

Sous cette forme, nous pouvons à présent appliquer le principe des tiroirs : on note x1, x2, . . . , xn les

n éléments (distincts) de S, et on considère les n fractions
1

x1 + 1
,

1

x2 + 1
, . . . ,

1

xn + 1
. Les xi étant

positifs, on a, pour tout i, 0 <
1

xi + 1
⩽ 1. Cela nous pousse à considérer les n − 1 intervalles ]0, 1

n−1
],

] 1
n−1

, 2
n−1

], . . . , ]n−2
n−1

, 1] qui partitionnent ]0, 1] en guise de tiroirs. D’après le principe des tiroirs, il existe

deux indices i ̸= j tels que
1

xi + 1
et

1

xj + 1
soient dans le même intervalle de longueur 1

n−1
, avec sans

perte de généralité
1

xi + 1
>

1

xj + 1
. On a alors

1

S(xi, xj) − 1
=

1

xi + 1
−

1

xj + 1
<

1

n− 1
,

ou encore S(xi, xj) > n en passant à l’inverse. Cela conclut l’exercice : les éléments xi et xj de S

conviennent.
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Solution de l’exercice 8
On a envie de donner un peu de sens aux termes de la forme sk

k!
. Le k! fait penser aux permutations de k

nombres. Et justement, quand on développe sk, on remarque que pour tous 1 ⩽ i1 < i2 < ... < ik ⩽ n,
le terme ai1ai2 ...aik apparaı̂t k! fois. En effet, chaque permutation de ai1 ,ai2 , ...,aik apparaı̂t une fois
dans le développement de (a1 + ...+ an)

k. On a donc

sk

k!
⩾

∑
1⩽i1<i2<...<ik⩽n

ai1 · ai2 . . .aik .

Ainsi,

1+ s+
s2

2!
+ ...+

sn

n!
⩾

n∑
k=0

∑
a⩽i1<i2<...<ik⩽n

ai1 . . .aik .

Or, dans le terme de droite, on reconnaı̂t le développement de (1 + a1)(1 + a2)...(1 + an). Pour tout i,
on a par IAG 1+ ai ⩾ 2

√
ai, donc

(1+ a1)...(1+ an) ⩾ 2
√
a1 · 2

√
a2 · ... · 2

√
an = 2n

√
p.

D’après les deux inégalités précédentes, on a bien

1+ s+
s2

2
+ ...+

sn

n!
⩾ 2n

√
p,

ce qui conclut.

Solution Alternative de l’exercice 8
L’inégalité arithmético-géométrique nous donne la valeur minimale de s à p fixé :

s ⩾ np
1
n .

L’exercice revient donc à montrer que, pour tout p > 0,

2n ·
√
p ⩽

n∑
k=0

nkp
k
n

k!
.

Les factorielles qui apparaissent au dénominateur nous incitent à essayer de faire apparaı̂tre des coeffi-
cients binomiaux. On utilise donc la majoration suivante :

∀k, nk ⩾ n · (n− 1) · · · · · (n− k+ 1).

Cela nous permet d’écrire, par binôme de Newton :

n∑
k=0

nkp
k
n

k!
⩾

n∑
k=0

n(n− 1) . . . (n− k+ 1)p
k
n

k!
=

n∑
k=0

n!p
k
n

(n− k)!k!

=

n∑
k=0

(
k

n

)
p

k
n = (p

1
n + 1)n.

Pour conclure, il nous suffit de remarquer que, par IAG,

(p
1
n + 1)n ⩾

(
2

√
p

1
n

)n

= 2n ·
√
p.
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Solution de l’exercice 9 Une première difficulté dans ce problème est d’aboutir à une inégalité portant
sur deux termes spécifiques, à savoir xn et x1, à partir d’hypothèses symétriques en toutes les variables.
Une bonne idée pour pallier à ce problème est d’établir, pour chaque terme, une inégalité impliquant xn,
x1 et ce terme particulier, puis de sommer ces inégalités afin d’utiliser les hypothèses de l’énoncé.

Puisque les xi sont rangés dans l’ordre croissant, on a, pour tout i ⩾ 1, (xi − x1)(xi − xn) ⩽ 0. En
sommant cette inégalité sur tous les i, on obtient∑

x2i − (x1 + xn)
∑

xi + nxnx1 ⩽ 0,

ce qui semble difficile à manipuler puisque l’on a pas d’information sur la somme des x2i . Ainsi, on
modifie légèrement l’inégalité établie, que l’on écrit sous la forme

0 ⩾
(xi − x1)(xi − xn)

xi
= xi − (x1 + xn) +

x1xn

xi
.

En sommant cette inégalité sur tous les i ∈ {1, 2, . . . ,n}, on obtient

0 ⩾
n∑

i=1

xi − n(x1 + xn) + x1xn

n∑
i=1

1

xi
,

ou encore 0 ⩾ 4n− n(x1 + xn) + nx1xn en utilisant les conditions de l’énoncé. En divisant par n et en
notant t = xn

x1
⩾ 1, on trouve

0 ⩾ 4− x1(1+ t) + x21t.

On reconnaı̂t là une équation du second degré en la variable x1, dont le discriminant est nécessairement
positif, sans quoi la quantité 4− x1(1+ t) + x21t serait toujours strictement positive. Ainsi,
0 ⩽ (1+ t)2−16t = t2−14t+1, ou encore 48 ⩽ (t−7)2. En passant à la racine, on trouve 4

√
3 ⩽ t−7

ou −4
√
3 ⩾ t − 7. Ce second cas est impossible puisque t ⩾ 1. Ainsi, t ⩾ 7 + 4

√
3, comme attendu.

Cela conclut.
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Solutions Seniors

Solution de l’exercice 10
Essayons de comparer abc à chacun des trois termes séparément.
Pour comparer à abc à 3a, on souhaite se débarasser du b et du c dans le produit. Pour cela, on peut
simplement les minorer tous les deux par 3 :

abc ⩾ a · 3 · 3 = 9a

De même, on obtient
abc ⩾ 9b

et
abc ⩾ 9c

Il ne reste plus qu’à additionner ces trois expressions :

abc+ abc+ abc ⩾ 9a+ 9b+ 9c

On obtient alors l’inégalité voulue en divisant par 3.
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Solution de l’exercice 11
Si l’on calcule les premiers termes de la suite pour certaines valeurs de a, on remarque que celle-ci
semble croissante. C’est ce qu’on va montrer en toute généralité.
Montrons donc par récurrence sur n que an ⩾ an−1 ⩾ an−2 ⩾ ... ⩾ a0 pour tout n ⩾ 1.
Initialisation : Pour n = 1, on a bien d’après l’énoncé a1 = a ⩾ a0.
Hérédité : Soit n ⩾ 1. Supposons que an ⩾ an−1 ⩾ an−2 ⩾ ... ⩾ a0, montrons que an+1 ⩾ an.
On a, d’après la relation de l’énoncé,

an+1 = an(an − 1) − an−1(an−1 − 2),

donc
an+1 − an = an(an − 2) − an−1(an−1 − 2) = (an − 1)2 − (an−1 − 1)2.

Or, an ⩾ an−1 ⩾ a0 = 1 par hypothèse de récurrence, donc an − 1 ⩾ an−1 − 1 ⩾ 0 et (an − 1)2 ⩾
(an−1 − 1)2. Ainsi, an+1 − an ⩾ 0, donc an+1 ⩾ an ⩾ an−1 ⩾ ... ⩾ a0, ce qui achève la récurrence.
Ainsi, la suite est croissante. Comme le premier terme vaut 1, a fortiori chaque terme de la suite est
supérieur ou égal à 1.

Solution Alternative de l’exercice 11
Montrer que an ⩾ 1 pour tout n ⩾ 0 revient à montrer que an− 1 ⩾ 0 pour tout n ⩾ 0. Cette remarque,
ainsi que la présence du 1 dans la condition de l’énoncé, nous incite à introduire la suite auxiliaire b,
définie pour tout n ⩾ 0 par bn = an − 1.
L’hypothèse de l’énoncé se réécrit alors, pour tout n ⩾ 0 :

bn+2 = bn+1 + b2
n+1 − b2

n.

On montre alors par récurrence, comme dans la première solution, que pour tout n ⩾ 0, bn+1 ⩾ bn,
donc pour tout n ⩾ 0, bn ⩾ b0 = 0.
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Solution de l’exercice 12
On va essayer de forcer l’apparition de factorisations pour transformer le produit en une somme. Pour
cela, on ajoute un terme des deux côtés de l’inégalité, qui permette de factoriser les deux termes. On a
cd− ad ⩽ cd− bc, donc (c− a)d ⩽ (d− b)c.
Cette expression semble plus agréable car on veut justement montrer que c − a ⩽ d − b. On cherche
maintenant à se débarasser du d en facteur à gauche et du c en facteur à droite.
On a en fait (d− b)c ⩽ (d− b)d. Ainsi, (c−a)d ⩽ (d−b)d, donc c−a ⩽ d− b (on peut diviser par
d car d > 0), et on obtient bien c+ b ⩽ a+ d.
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Solution de l’exercice 13
On commence par poser y = −1 pour faire disparaı̂tre le membre de droite. On obtient f(xf(−1)−1) = 0
pour tout x. En particulier, x = 0 donne f(−1) = 0.
Cherchons les zéros de f. Soit y0 un réel tel que f(y0) = 0. Alors

f
(
−y2

0

)
= (y0 + 1)f(x− y0).

Si l’on dispose d’un tel y0 ̸= −1, alors f est constante égale à
f (−y2

0)

y0 + 1
, donc identiquement nulle car

f(−1) = 0. Sinon, −1 est le seul zéro de f. Mais alors en posant y = x+1, on obtient f (xf(x+ 1) − (x+ 1)2) =
0, d’où

xf(x+ 1) − (x+ 1)2 = −1

En simplifiant par x lorsqu’il est non nul, on en déduit que pour tout z ̸= 1, f(z) = z+ 1. Enfin, on pose
x = 3 et y = 2 dans l’équation initiale, ce qui donne f(3f(2) − 4) = 3f(1) soit f(1) = 2.
Réciproquement, la fonction x 7→ x+ 1 ainsi que la fonction nulle sont bien solutions.
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Solution de l’exercice 14 Soit M = 20252025 et N = 1000000. Il s’agit de démontrer qu’au moins un
terme de la suite (bn) est supérieur ou égal à M. On sépare deux cas :

Cas 1 : Il existe un entier i tel que ai = ai+1 = . . . = ai+MN−1 = 1.
Remarquons tout d’abord que pour n’importe quel indice n, si an = 1, alors

bn =
a1a2 . . .an

a1 + a2 + . . .+ an

=
a1a2 . . .an−1

a1 + a2 + . . .+ an−1 + 1
< bn−1.

Ainsi, on a les inégalités
bi > . . . > bi+MN−1 (⋆)

Cependant, parmi ces MN éléments de la suite (bn), au moins M sont entiers. En effet, pour chaque
k ∈ [[0;M − 1]], au moins un des termes de la suite (bn) parmi les indices [[i + kN, i + (k + 1)N − 1]]
est un entier. Par construction, ces M entiers sont strictement positifs. Par ailleurs, au vu de (⋆), ils sont
distincts deux-à-deux. Le plus grand d’entre eux est donc supérieur ou égal à M, comme voulu.

Cas 2 : Parmi MN termes consécutifs de la suite (an), il y en a toujours au moins 1 qui est supérieur ou
égal à 2.
Dans ce cas, on remarque que, pour tout entier naturel k, on a

1

bkMN

=
a1 + a2 + . . .+ akMN

a1a2 . . .akMN

=

kMN∑
i=1

1∏
j̸=i aj

.

Parmi les termes a1, a2, . . ., akMN, au moins k sont supérieurs ou égaux à 2 par hypothèse. Il en découle
que chacun des kMN dénominateurs de la somme de droite contient au moins k − 1 termes supérieurs
ou égaux à 2 et est donc supérieur ou égal à 2k−1. Ainsi, on a

1

bkMN

⩽
kMN

2k−1
.

On applique cette inégalité à k = 2M2N + 2, de sorte que k2 > 2kM2N + k puis k2−k+2
2

> kM2N.
Ensuite, d’après le binôme de Newton,

2k−1 =

k−1∑
ℓ=0

(
k− 1

ℓ

)
⩾ 1+

(
k− 1

1

)
+

(
k− 1

2

)
=

k2 − k+ 2

2
> kM2N,

Puis bkMN ⩾ 2k−1

kMN
> M. Cela conclut le deuxième cas et termine l’exercice.
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Solution de l’exercice 15
Clairement 2025 ne joue aucun rôle (sauf peut-être pour sa parité), on pose donc n = 2025. La tête du
problème nous donne très envie de chercher un invariant. Le problème est qu’il va nous falloir un inva-
riant qui prouve qu’un polynôme ne peut pas avoir que des racines strictement positives, ce qui semble
audacieux.
Une première chose claire est que les transformations autorisées par l’énoncé vont mal se comporter avec
les racines (il est impossible d’exprimer les racines de f1 et g1 en fonction de celles de f et g). Alors, si
l’invariant ne peut pas porter sur les racines, il ne peut porter que sur les coefficients des polynômes.
En effet, si l’on trouve un invariant sur les coefficients des polynômes, les relations de Viète nous per-
mettront de trouver une propriété sur les racines afin d’aboutir à une contradiction si elles sont toutes
strictement positives.
Tout cela est bien beau, mais il nous manque toujours l’invariant. Pour le trouver, analysons plus en détail
l’énoncé. Il précise que tous les polynômes sont unitaires, ce qui semble nous inciter à nous intéresser
aux coefficients de haut degré plutôt qu’à ceux de bas degré.
Pour avancer, le plus simple est d’écrire les égalités entre f,g, f1,g1 en fonction de leurs coefficients.
Posons donc

f = a0 + a1X+ ...+ an−1X
n−1 + Xn

g = b0 + b1X+ ...+ bn−1X
n−1 + Xn

f1 = u0 + u1X+ ...+ un−1X
n−1 + Xn

g1 = v0 + v1X+ ...+ vn−1X
n−1 + Xn

On a alors f+ g = f1 + g1+ ou fg = f1g1, ce qui s’écrit

(a0 + b0) + (a1 + b1)X+ ...+ (an−1 + bn−1)X
n−1 + 2Xn

= (u0 + v0) + (u1 + v1)X+ ...+ (un−1 + vn−1)X
n−1 + 2Xn

ou bien

a0b0 + (a0b1 + a1b0)X+ ...+ (an−1 + bn−1)X
2n−1 + X2n

= u0v0 + (u0v1 + u1v0)X+ ...+ (un−1 + vn−1)X
2n−1 + X2n

Or, si l’on regarde le coefficient devant Xn−1 dans le premier cas et le coefficient devant X2n−1 dans le
second cas, on remarque qu’on a toujours an−1 + bn−1 = un−1 + vn−1 !
On tient maintenant notre invariant : d’après la remarque précédente, la somme des coefficients devant
Xn−1 des polynômes est invariante.
Au début, cette somme est positive car tous les coefficients des polynômes sont positifs.
Ainsi, cette somme est toujours positive. A fortiori, il existe toujours un polynôme dont le coefficient
devant X2n−1 est positif. Or, d’après les relations de Viète, le polynôme étant unitaire, ce coefficient est
égal à l’opposé de la somme des racines du polnyôme. Si toutes ces racines sont strictement positives,
alors l’opposé de leur somme est strictement négatif, ce qui est contradictoire.
Ainsi, il existe, à chaque instant, au moins un polynôme qui n’a pas que des racines strictement positives,
ce qui conclut.
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Solution de l’exercice 16
On devine que la solution est la fonction inverse, qui convient bien.

On cherche à faire une substitution telle que x+ f(y) = xy+ 1. C’est possible en posant x =
f(y) − 1

y− 1
,

à condition que y ̸= 1 et que cette fraction soit strictement positive. Si c’est le cas, en divisant des deux
côtés par les f() rendus égaux on aboutit directement à y = 1, ce qui contredit notre hypothèse. On en

déduit que
f(y) − 1

y− 1
< 0, autrement dit si y < 1, alors f(y) > 1 et inversement.

Supposons que y > 1. On pose x =
y− 1

y
, ce qui donne f

(
y− 1

y
+ f(y)

)
= yf(y). Mais alors si

f(y) <
1

y
, alors yf(y) < 1, donc f

(
y− 1

y
+ f(y)

)
< 1, donc

y− 1

y
+ f(y) > 1, soit f(y) >

1

y
, ce qui

contredit notre hypothèse. Le même raisonnement montre que l’on ne peut pas non plus avoir f(y) >
1

y
,

donc finalement, f(y) =
1

y
pour tout y > 1.

Revenons à l’équation de départ. Comme xy+ 1 > 1, on peut écrire, pour tout y > 1 :

f

(
xy+ 1

y

)
= f

(
x+

1

y

)
= f(x+ f(y)) = yf(xy+ 1) =

y

xy+ 1

En prenant x suffisamment petit et y suffisamment grand, on peut atteindre tous les réels de ]0, 1] avec

l’expression
xy+ 1

y
= x +

1

y
. Pour z ∈]0, 1], cela se fait explicitement en posant x =

z

2
et y =

2

z
par

exemple. Finalement, la seule solution est bien la fonction inverse.
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Solution de l’exercice 17 Montrons que la constante recherchée est M =
(n!)2(
2n
n

) .

Dans cet exercice, nous nous intéressons aux valeurs que prend un polynôme de degré au plus n − 1 en
n + 1 points. Cela nous fait penser à l’interpolation de Lagrange : une première idée est d’essayer de
rendre M nul, en prenant par exemple P(i) = in pour 0 ⩽ i ⩽ n. Cependant, le polynôme interpolateur
de ces n+ 1 points est de degré n et non de degré au plus n− 1.
Fixons désormais un polynôme P de degré au plus n − 1. Nous savons que si l’on note, pour chaque
0 ⩽ i ⩽ n, qi la quantité in − P(i), l’unique polynôme de degré au plus n vérifiant P(i) = in − qi

pour chaque 0 ⩽ i ⩽ n est de degré au plus n− 1. Cela nous donnera une condition sur les in − qi, et à
fortiori sur les qi. On écrit l’égalité

P(X) =

n∑
i=0

(
(in − qi)

∏
j̸=i

X− j

i− j

)
.

En effet, ces 2 polynômes sont de degré au plus n et coı̈ncident en n+ 1 points : ils sont donc égaux.
Le polynôme P étant de degré au plus n− 1, nous savons que le coefficient devant Xn dans l’expression
du membre de droite est nulle. Cela s’écrit

0 =

n∑
i=0

in − qi∏
j̸=i i− j

(1).

De plus, remarquons que l’on a l’égalité polynomiale

Xn =

n∑
i=0

in
∏
j̸=i

X− j

i− j
.

En effet, ce sont deux polynômes de degré au plus n qui coı̈ncident en n + 1 points : 0, 1, . . ., n. En
égalant les coefficients devant Xn, il vient

1 =

n∑
i=0

in∏
j̸=i i− j

. (2)

En combinant les égalités (1) et (2), on trouve

1 =

n∑
i=0

qi∏
j̸=i i− j

.

Pour tout i, on a
∏

j̸=i(i − j) = (−1)n−ii!(n − i)!. On peut faire apparaı̂tre des coefficients binomiaux
en multipliant l’égalité ci-dessus par n! :

n! =

n∑
i=0

(−1)n−iqi

(
n

i

)
. (∗)

Nous pouvons maintenant appliquer l’inégalité de Cauchy-Schwarz et obtenir(
n∑

i=0

q2
i

)(
n∑

i=0

(
n

i

)2
)

⩾

(
n∑

i=0

(−1)n−iqi

(
n

i

))2

= (n!)2.
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D’où, finalement,
n∑

i=0

(in − P(i))2 ⩾
(n!)2∑n
i=0

(
n
i

)2 =
(n!)2(
2n
n

) ,
où la dernière égalité découle d’un double comptage classique pour dénombrer le nombre de manières de
construire un sous-ensemble à n éléments de {1, 2, . . . , 2n}. Réciproquement, si l’on pose, pour chaque

i, qi =
(−1)n−i

(
n
i

)
n!(

2n
n

) , ils vérifient l’égalité (∗) et le cas d’égalité de Cauchy-Schwarz. De plus, l’égalité

(∗) est équivalente à l’égalité (1), elle-même équivalente au fait que le polynôme P de degré au plus n
vérifiant P(i) = in − qi pour i = 0, . . . ,n soit bien de degré au plus n− 1.
Cela montre bien que M est atteignable, et donc que M est bel et bien la constante recherchée.
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Solution de l’exercice 18 Supposons par l’absurde que pour tout i, il existe j ̸= i tel que ai

i
=

aj

j
. En

particulier, a1 > 0, sinon la valeur 0 ne serait prise qu’une seule fois. On remarque tout d’abord que pour
tout réel r, un indice i vérifiant ai

i
= r doit vérifier 1 ⩾ ai = ir, ou encore i ⩽ 1

r
. En particulier, il n’y a

qu’un nombre fini de tels indices i. Par la suite, on dira qu’un indice i est bleu s’il existe un indice j > i

avec ai

i
=

aj

j
et rouge sinon. D’après la remarque précédente, pour tout indice bleu i, il existe un indice

rouge j vérifiant ai

i
=

aj

j
. De plus, il existe une infinité d’indices bleus, puisqu’il existe une infinité de

valeurs prises par la suite (ai

i
) (celle-ci prenant des valeurs strictement positives arbitrairement petites).

On définit maintenant deux suites d’indices strictement croissantes (ik) et (jk), l’une entièrement bleue
et l’autre entièrement rouge, par récurrence :
▷ On pose i1 = 1, qui est effectivement bleu, puis on définit j1 > 1 comme étant le plus grand indice
vérifiant aj1

j1
= a1

1
, qui est rouge par définition.

▷ Ensuite, une fois i1, i2, . . . , in et j1, j2, . . . , jn définis pour un certain n ⩾ 1, on définit in+1 comme
étant le plus petit indice bleu supérieur à jn, puis jn+1 comme étant l’indice rouge vérifiant

ajn+1

jn+1
=

ain+1

in+1
.

Pour tout indice k, on pose également xk = jk − ik.

Soit n ⩾ 1 un entier. Les intervalles de la forme [jk, ik+1 − 1], où 1 ⩽ k ⩽ n − 1, sont disjoints
et leur union est incluse dans [1, in − 1] par construction. De plus, les éléments de ces intervalles sont
exclusivement rouges. On en déduit que, parmi les indices de 1 à in − 1, au moins

n−1∑
k=1

ik+1 − jk = in − 1−

n−1∑
k=1

xk

sont rouges. Cependant, à chaque indice rouge r de l’intervalle [1, in − 1], on peut associer un indice
bleu différent b vérifiant

ar

r
=

ab

b
et b < r. Ainsi, le nombre d’indices rouges dans cet intervalle

vaut au plus in−1
2

. En combinant ces deux dernières remarques, on obtient
n−1∑
k=1

xk ⩾
in − 1

2
, ou encore

in ⩽ 1+ 2
∑n−1

k=1 xk.

Remarquons enfin que pour tout entier k ⩾ 1, on a ajk − aik ⩽ ajk − ajk−1
(où l’on pose j0 = 0 et

a0 = 0). De plus, on a
aik

ik
=

ajk

jk
, de sorte que

ajk − aik =
aikxk

ik
⩾

a1xk

ik
⩾

a1xk

1+ 2
∑k−1

i=1 xi
.

Soit n ⩾ 1 un entier. En sommant ces deux inégalités pour k = 1, 2, . . . ,n, et en faisant apparaitre une
somme télescopique, on trouve

1 ⩾ ajn =

n∑
k=1

ajk − ajk−1
⩾

n∑
k=1

ajk − aik ⩾
a1

2

n∑
k=1

xk
1
2
+
∑k−1

i=1 xi
.

Notons L le membre de droite. On remarque que

L =
a1

2

n∑
k=1

xk
1
2
+
∑k−1

i=1 xi
=

a1

2

n∑
k=1

(
1
2
+
∑k

i=1 xi
1
2
+
∑k−1

i=1 xi
− 1

)
,

d’où, par IAG en faisant apparaitre un produit télescopique,

L ⩾
na1

2

 n

√√√√1+ 2

n∑
i=1

xi − 1

 ,
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d’où l’on tire L > na1

2

(
n
√
n− 1

)
en utilisant simplement l’inégalité xi ⩾ 1 pour tout i. Finale-

ment, en notant A = n
√
n et en se rappelant l’inégalité 1 ⩾ L obtenue précédemment, on obtient

1 > na1

2

(
n
√
n− 1

)
. Divers arguments de nature analytique permettent de montrer que cette inégalité

est fausse pour n assez grand, ce qui constitue la contradiction recherchée. Une manière d’établir cette
absurdité est de se rappeler l’inégalité (1 + 1

x
)x ⩽ e, vraie pour tout réel x > 0, où e est la constante

d’Euler. Ainsi, si k > 2
a1

est un réel et n ⩾ ek, on a n ⩾ ek ⩾ (1+ k
n
)n, de sorte que n

(
n
√
n− 1

)
⩾ k,

puis na1

2

(
n
√
n− 1

)
⩾ ka1

2
> 1, absurde. Cela conclut la preuve de l’exercice.
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