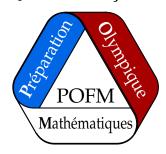
PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES



Test du 14 mai 2025

Durée: 4H

Instructions

- ▷ Rédigez les différents problèmes sur des copies distinctes. Sur chaque copie, écrivez en haut à gauche votre nom en majuscules, votre prénom en minuscules. Écrivez votre classe et le numéro du problème traité en haut à droite.
- ▶ Le groupe Junior est constitué des élèves nés en 2010 ou après. Ces élèves doivent traiter les exercices 1 à 4.
- ▶ Le groupe Senior est constitué des élèves nés en 2009 ou avant. Ces élèves doivent traiter les exercices 5 à 7.
- Don demande des solutions **complètement rédigées**, où toute affirmation est soigneusement **justifiée**. La notation tiendra compte de la **clarté** et de la **précision** de la copie.
 - Travaillez d'abord au brouillon, et rédigez ensuite au propre votre solution, ou une tentative, rédigée, de solution contenant des résultats significatifs pour le problème. Ne rendez pas vos brouillons : ils ne seraient pas pris en compte.
- ▶ Une solution complète rapportera plus de points que plusieurs tentatives inachevées. Il vaut mieux terminer un petit nombre de problèmes que de tous les aborder.
- ▶ Règles, équerres et compas sont autorisés. Les rapporteurs sont interdits. Les calculatrices sont interdites, ainsi que tous les instruments électroniques.

Chaque exercice est noté sur 7 points.

Après l'épreuve, merci de renvoyer les copies par voie électronique via le formulaire de dépôt disponible à l'adresse suivante :

http://monge.univ-mlv.fr/~juge/animath/

Énoncés Junior

Exercice 1. Soient a et c des réels strictement positifs tels que ac = 9. Déterminer le plus grand réel b vérifiant la propriété suivante : pour tous réels x et y non nuls (et non nécessairement positifs),

$$\frac{a}{x^2} + \frac{b}{xy} + \frac{c}{y^2} \geqslant 0.$$

Exercice 2. Soit ABC un triangle aux angles aigus tel que AB = BC > CA. La médiatrice du segment [AB] coupe le segment [BC] au point D. On note Ω le cercle circonscrit au triangle ADC. La médiatrice du segment [AB] recoupe Ω en un point E. On note E le point diamétralement opposé au point E dans E.

Montrer que DB = DF.

Exercice 3. Déterminer tous les couples (p,q) de nombres premiers tels que $p \neq q$ et q^p est un diviseur de $p + p^q + p^{(q^p)}$.

Exercice 4. Soit $n \geqslant 2$ un entier. Déterminer, en fonction de n, le plus grand entier strictement positif M vérifiant la propriété suivante : pour tout n-uplet (a_1, \ldots, a_n) d'entiers positifs vérifiant $a_1 + \ldots + a_n = M$, il existe n entiers b_1, \ldots, b_n appartenant tous à l'ensemble $\{-2, -1, 0, 1, 2\}$, non tous nuls et vérifiant

$$a_1b_1 + \ldots + a_nb_n = 0.$$

Énoncés Senior

Exercice 5. Déterminer tous les entiers strictement positifs n vérifiant la propriété suivante : pour tout diviseur positif d de n, d+1 est soit un nombre premier, soit un diviseur de n.

Exercice 6. Soit N un entier strictement positif. Aline et Baptiste jouent au jeu suivant. Au départ, les entiers $1, 2, \ldots, N$ sont écrits au tableau. Chacun à leur tour, en commençant par Aline, ils choisissent un couple (k, n), où k est un entier positif et k un entier écrit au tableau, puis effacent du tableau tous les entiers k tels que k divise k divise k le jeu se termine lorsqu'il n'y a plus d'entiers au tableau et le perdant est le joueur qui a effacé le dernier nombre.

Déterminer les entiers N pour les quels Aline peut s'assurer de gagner quels que soient les coups de Baptiste.

Exercice 7. Déterminer toutes les suites a_1, a_2, \ldots périodiques de nombres réels vérifiant les deux conditions suivantes pour tout entier $n \ge 1$:

$$a_{n+2} + a_n^2 = a_n + a_{n+1}^2$$
 et $|a_{n+1} - a_n| \le 1$.

Une suite b_1, b_2, \ldots est dite périodique s'il existe un entier $T \geqslant 1$ tel que, pour tout entier $n \geqslant 1$, $b_{n+T} = b_n$.