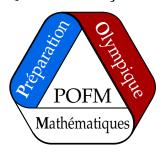
PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES



Test du 2 avril 2025

Durée: 4H

Instructions

- ▶ Rédigez les différents problèmes sur des copies distinctes. Sur chaque copie, écrivez en haut à gauche votre nom en majuscules, votre prénom en minuscules. Écrivez votre classe et le numéro du problème traité en haut à droite.
- ▶ Le groupe Junior est constitué des élèves nés en 2009 ou après.
 Ces élèves doivent traiter les exercices 1 à 4.
- ▶ Le groupe Senior est constitué des élèves nés en 2008 ou avant. Ces élèves doivent traiter les exercices 5 à 7.
- Don demande des solutions **complètement rédigées**, où toute affirmation est soigneusement **justifiée**. La notation tiendra compte de la **clarté** et de la **précision** de la copie.
 - Travaillez d'abord au brouillon, et rédigez ensuite au propre votre solution, ou une tentative, rédigée, de solution contenant des résultats significatifs pour le problème. Ne rendez pas vos brouillons : ils ne seraient pas pris en compte.
- ▶ Une solution complète rapportera plus de points que plusieurs tentatives inachevées. Il vaut mieux terminer un petit nombre de problèmes que de tous les aborder.
- Règles, équerres et compas sont autorisés. Les rapporteurs sont interdits.
 Les calculatrices sont interdites, ainsi que tous les instruments électroniques.

Chaque exercice est noté sur 7 points.

Énoncés Junior

Exercice 1. Déterminer tous les couples (m,n) d'entiers strictement positifs tels que le nombre $|4^m-7^n|$ est un nombre premier.

Exercice 2. Déterminer le plus petit entier strictement positif k vérifiant la propriété suivante : pour tout sous-ensemble S de $\{1, \ldots, 2024\}$ de taille k, il existe deux entiers distincts $a, b \in S$ tels que ab + 1 est un carré parfait.

Exercice 3. Soient a, b et c des réels vérifiant a + b + c = 0 et abc = -16. Déterminer la plus petite valeur que peut prendre l'expression

$$W = \frac{a^2 + b^2}{c} + \frac{b^2 + c^2}{a} + \frac{c^2 + a^2}{b}.$$

Exercice 4. Soit ABCD un quadrilatère cyclique vérifiant AC < BD < AD et $\widehat{DBA} < 90^\circ$. Soit E le point de la parallèle à (AB) passant par D vérifiant AC = DE et tel que les points E et E sont situés de part et d'autre de la droite E sont situés de part et d'autre de la parallèle à E point E et E sont situés de part et d'autre de la droite E sont situés de la droite E sont situés de part et d'autre de la droite E sont situés de la droite E

Montrer que les médiatrices des segments [BC] et [EF] se coupent sur le cercle circonscrit au quadrilatère ABCD.

Énoncés Senior

Exercice 5. Soit ABCD un quadrilatère cyclique vérifiant AC < BD < AD et $\widehat{DBA} < 90^\circ$. Soit E le point de la parallèle à (AB) passant par D vérifiant AC = DE et tel que les points E et C sont situés de part et d'autre de la droite (AD). Soit E le point de la parallèle à (CD) passant par E vérifiant E et tel que les points E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E sont situés de part et d'autre de la droite E et E et

Montrer que les médiatrices des segments [BC] et [EF] se coupent sur le cercle circonscrit au quadrilatère ABCD.

Exercice 6. Soit \mathbb{N}^* l'ensemble des entiers strictement positifs. Déterminer tous les sousensembles \mathcal{S} de $\{2^0, 2^1, 2^2, \ldots\}$ pour lesquels il existe une fonction $f: \mathbb{N}^* \to \mathbb{N}^*$ telle que

$$\mathcal{S} = \{ f(a+b) - f(a) - f(b) \mid a, b \in \mathbb{N}^* \}.$$

Exercice 7. Soit a_0, a_1, a_2, \ldots une suite infinie strictement croissante d'entiers strictement positifs vérifiant que, pour tout entier $n \ge 1$,

$$a_n \in \left\{ \frac{a_{n-1} + a_{n+1}}{2}, \sqrt{a_{n-1} \cdot a_{n+1}} \right\}.$$

Soit b_1, b_2, \ldots une suite infinie de lettres définie pour tout $n \ge 1$ par

$$b_n = \begin{cases} A & \text{si } a_n = \frac{a_{n-1} + a_{n+1}}{2} ; \\ G & \text{sinon.} \end{cases}$$

Montrer qu'il existe deux entiers $n_0, d \ge 1$ tels que, pour tout $n \ge n_0, b_{n+d} = b_n$.