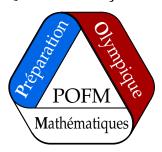
PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES



TEST DU 20 NOVEMBRE 2024 à destination des élèves du groupe Senior

Durée: 4H

Instructions

- ▷ Rédigez les différents problèmes sur des copies distinctes. Sur chaque copie, écrivez en haut à gauche votre nom en majuscules, votre prénom en minuscules. Écrivez votre classe et le numéro du problème traité en haut à droite.
- Don demande des solutions **complètement rédigées**, où toute affirmation est soigneusement **justifiée**. La notation tiendra compte de la **clarté** et de la **précision** de la copie.
 - Travaillez d'abord au brouillon, et rédigez ensuite au propre votre solution, ou une tentative, rédigée, de solution contenant des résultats significatifs pour le problème. Ne rendez pas vos brouillons : ils ne seraient pas pris en compte.
- ▶ Une solution complète rapportera plus de points que plusieurs tentatives inachevées. Il vaut mieux terminer un petit nombre de problèmes que de tous les aborder.
- ▷ Règles, équerres et compas sont autorisés. Les rapporteurs sont interdits. Les calculatrices sont interdites, ainsi que tous les instruments électroniques.

Chaque exercice est noté sur 7 points.

Après l'épreuve, merci de renvoyer les copies par voie électronique via le formulaire de dépôt disponible à l'adresse suivante :

http://monge.univ-mlv.fr/~juge/animath/

Énoncés Senior

Exercice 1. Soit ABC un triangle dont les angles sont tous aigus. On note B' et C' les pieds respectifs des hauteurs issues des sommets B et C. Soient K et L les symétriques respectifs du point B' par rapport aux droites (AB) et (BC). Soient M et N les symétriques respectifs du point C' par rapport aux droites (AC) et (BC).

Démontrer que KL = MN.

Exercice 2. Déterminer tous les ensembles S finis non vides d'entiers strictement positifs ayant la propriété suivante :

Pour tout choix de deux entiers a et b dans S, il existe un entier c dans S tel que a divise b+2c.

Exercice 3. Soit $d \geqslant 1$ un entier fixé. Anna et Baptiste jouent au jeu suivant. Chacun à leur tour, en commençant par Anna, ils choisissent un entier k tel que $0 \leqslant k \leqslant 2d-1$ et qui n'a pas encore été choisi par un des deux joueurs, et un réel strictement positif qu'ils notent a_k . Lorsque tous les entiers ont été choisis, Anna écrit le polynôme $P(X) = a_0 + a_1 X + \ldots + a_{2d-1} X^{2d-1} + X^{2d}$. Anna gagne s'il existe un réel c tel que P(c) = 0. Sinon c'est Baptiste qui gagne.

Déterminer, en fonction de d, lequel des deux joueurs possède une stratégie lui permettant de gagner quels que soient les coups de son adversaire.

Exercice 4. On considère une grille carrée de taille $n \times n$ composée de n^2 cases. Pour tout diviseur positif d de n, la d-division de la grille est définie comme la division de la grille en $(n/d)^2$ sous-grilles carrées, toutes de taille $d \times d$, de sorte que chaque case appartient à exactement une sous-grille.

On dit qu'un entier n est *régulier* s'il est possible d'écrire les entiers $1, 2, ..., n^2$ dans les cases de la grille en vérifiant les conditions suivantes :

- ▷ chaque case contient exactement un entier,
- \triangleright chacun des entiers $1, 2, \dots, n^2$ est écrit dans exactement une case,
- \triangleright pour tout diviseur d de n tel que 1 < d < n et pour toute sous-grille de la d-division de la grille, la somme des entiers écrits dans les cases de la sous-grille n'est pas divisible par d.

Déterminer tous les entiers pairs réguliers.