Cours en ligne Équations diophantiennes 10/12/2023

Le cours reprend le TD donné au stage de Valbonne 2021 au groupe C (Modulo bashing).

Notions utiles dans les équations diophantiennes :

- Valuation p-adique et décomposition en facteurs premiers
- Réduction de l'équation à des modulos \rightarrow théorème d'Euler-Fermat
- Utilisation des inégalités $\begin{array}{l} \rightarrow a|b\Rightarrow b=0 \text{ ou } |a|\leq |b| \\ \rightarrow \text{ pour les grands } n \text{, on a}: n^k < a^n < n! \text{ (avec } k>0 \text{ et } a>1) \end{array}$

Exercices

Exercice 1

Déterminer tous les entiers strictement positifs x et n tels que

$$1! + 2! + \cdots + n! = x^4$$

Exercice 2

Déterminer tous les entiers naturels n, m tels que

$$n^3 - 3n^2 + n + 2 = 5^m$$

Exercice 3

Trouver tous les couples d'entiers naturels (x, y) tels que

$$y^2 - x^2 + 7y + 6 = 0$$

Exercice 4

Déterminer tous les couples d'entiers (x, y) tels que :

$$x^2 = y^5 + 7$$

Exercice 5

Déterminer tous les nombres premiers p et q tels que :

$$p|5^q + 1$$
 et $q|5^p + 1$

Exercice 6

Trouver tous les entiers naturels x, y, z tels que

$$x^2 + y^2 = 3 \cdot 2023^z + 77$$

Exercice 7

Déterminer tous les entiers naturels a et b tels que

$$|3^a - 2^b| = 1$$

Exercice 8

Montrer que le cercle de centre 0 et de rayon $\sqrt{7}$ ne contient aucun point à coordonnées rationnelles.

Exercice 9

Déterminer tous les entiers naturels a, b tels que $2^a 3^b + 9$ soit un carré parfait.

Exercice 10 (P4 IMO 2019)

Déterminer tous les entiers n et k tels que

$$(2^{n}-2^{0})(2^{n}-2^{1})(2^{n}-2^{2})\cdots(2^{n}-2^{n-1})=k!$$

Solution de l'exercice 1

On regarde modulo 5 le terme de gauche, on suppose que $n \ge 4$. À partir de 5! les factoriels sont divisibles par 5. On a alors

$$1! + 2! + \cdots n! \equiv 1 + 2 + 1 + 4 \equiv 3[5]$$

Or une puissance quatrième est congrue à 0 ou 1 modulo 5 par le théorème de Fermat. Ainsi on a $n \leq 3$, on a pour n=2 et n=3 le même problème. On obtient finalement l'unique solution (x,n)=(1,1).

Solution de l'exercice 2

Une solution est rédigée dans le poly du stage de Valbonne 2021 groupe C 1.4 (Modulo Bashing), exercice 5.

Solution de l'exercice 3

Autrement dit, on cherche un carré égal $y^2 + 7y + 6$. On peut déjà remarquer que $y^2 + 7y + 6 < (y+4)^2 = y^2 + 8y + 16$. Par ailleurs pour y > 3:

$$y^2 + 7y + 6 > y^2 + 6y + 9 = (y+3)^2$$

Ainsi, on a pour y > 3, $y^2 + 7y + 6$ compris strictement entre les deux carrés consécutifs $(y+3)^2$ et $(y+4)^2$.

Pour y = 0, 1, 2, 3, on a $y^2 + 7y + 6 = 6, 14, 24, 36$, ainsi, la seule solution est (y, x) = (1, 1).

Solution de l'exercice 4

On observe qu'on a des puissances 2e et 5e. Le théorème de Fermat dit que la puissance p-1 est intéressante. Ici, on se place donc modulo $2 \times 5 + 1 = 11$ (qui est bien premier). On peut alors faire la table de modulos :

n	1	2	3	4	5	-5	-4	-3	-2	-1
n^2	1	4	-2	5	3	3	5	-2	4	1

Pour y^5 , on peut faire le calcul ou remarquer que par Fermat, on a (pour y premier avec 11)

$$11|(y^5)^2 - 1 = (y^5 - 1)(y^5 + 1)$$

Ainsi par le lemme d'Euclide y^5 est congru à 1 ou -1 modulo 11. On a donc finalement, $y^5 + 7$ congru à -5, -4 ou -3 modulo 11.

Solution de l'exercice 5

On se donne une solution (p,q) et on suppose $p \le q$. Alors, $5^p \equiv -1[q]$ et donc $5^{2p} \equiv 1[q]$. Cela signifie que l'ordre ω de 5 modulo q divise 2p.

- Si $\omega = 1$, on a $5 \equiv 1[q]$, donc q = 2. Ainsi, $p|5^2 + 1 = 26$. Ainsi, p = 2, 13.
- Si $\omega = 2$, on a q|24 et $q \neq |4$, donc q = 3. On a alors p|126, ainsi, p = 2, 3, 7, comme $3|5^p + 1$, on p = 3, 7.
- Si $\omega = p$ ou 2p, on a p|q-1 par le théorème de Fermat. Ainsi, $p \le q-1$, mais comme on a supposé, $p \ge q$, c'est exclu.

On vérifie aisément que toutes ces solutions conviennent ainsi que leur permutations.

Solution de l'exercice 6

On remarque $2023 = 7 \cdot 17^2$. On suppose $z \ge 1$, on a alors que le terme de droite est divisible par 7. En faisant une table de modulo (que je n'écris pas), on observe que $x^2 + y^2$ est congru à 0 modulo 7 uniquement lorsque x et y sont divisibles par 7. On écrit al :ors x = 7a et y = 7b. L'équation devient :

$$7(a^2 + b^2) = 11 + 3 \cdot 289 \cdot 2023^{z-1}$$

Pour z > 1, 7 divise le membre de gauche et 2023^{z-1} et donc divise 11, c'est absurde.

Pour z = 1, on a pour le membre de droite, $11 + 3 \cdot 289 \equiv 3$ [7]. C'est aussi impossible.

Pour z=0, on a $x^2+y^2=80$. En particulier, x,y<9 et l'un des deux est supérieur strictement à 6. On trouve alors les solutions $\{(8,4),(4,8)\}$.

Solution de l'exercice 7

Une solution est rédigée dans le poly du stage de Valbonne 2021 groupe C 1.4 (Modulo Bashing), exercice 7.

Solution de l'exercice 8

Solution donnée en cours

Solution de l'exercice 9

Une solution est rédigée dans le poly du stage de Valbonne 2021 groupe C 1.4 (Modulo Bashing), exercice 10.

Solution de l'exercice 10

Une solution est rédigée dans le poly du stage de Valbonne 2022 groupe C 1.5 (Encadrements en arithmétique), exercice 10.