Groupe A, Triangles Semblables

12 novembre 2023

1 Boite à outils

- 1. Angles alternes-internes, angles correspondants
- 2. Somme des angles d'un triangle, d'un quadrilatère (avec preuve)
- 3. Triangle isocèle
- 4. Théorème de l'angle au centre (avec preuve)
- 5. Théorème de l'angle inscrit (avec preuve)
- 6. Triangle rectangle, théorème de Thalès anglais (avec preuve)
- 7. Cocyclicité,
- 8. Théorème de l'angle tangeant
- 9. Triangles semblables

2 Exercices

Exercice 1. Quels sont les triangles ABC tels que ABC et ACB sont semblables? Quels sont les triangles ABC tels que ABC et BCA sont semblables?

Exercice 2. (Puissance d'un point par rapport à un cercle.) Soit \mathcal{C} un cercle, P un point à l'extérieur de ce cercle. Soient (d), (d_0) deux droites passant par P et coupant \mathcal{C} en A, B (dans cet ordre) et C, D (dans cet ordre) respectivement. Montrer que $PA \cdot PB = PC \cdot PD$.

Exercice 3. (Lemme d'Euclide.) Soit ABC un triangle rectangle en C et H le pied de la hauteur issue de C. Montrer que $AH \times AB = AC^2$. Montrer que $BH \times BA = BC^2$. Montrer que $AH \times BH = CH^2$.

Exercice 4. (premier théorème de Miquel). Soient $\Gamma 1$ et $\Gamma 2$ deux cercles de centres respectifs O_1 et O_2 , s'intersectant en deux points X et Y . Soit A un point de $\Gamma 1$ distinct de X et Y , on note B l'intersection de (AY) et $\Gamma 2$. Montrer que les triangles XO_1O_2 et XAB sont semblables.

Exercice 5. Dans un parallélogramme ABCD, on prend un point M sur la diagonale (AC). De M on trace une perpendiculaire à (AB), elle coupe (AB) en un point E. De même, la perpendiculaire à (AD) passant par M coupe (AD) en un point F. Démontrer que : $ME \times MF = AD \times AB$.

Exercice 6. (Théorème du pôle sud.) Soit ABC un triangle, C son cercle circonscrit. Soit I le centre du cercle inscrit, I A le pied de la bissectrice issue de A et S le point d'intersection de cette bissectrice et de C.

- 1. Montrer que S est sur la bissectrice de [BC]. Ce point S est appelé le pôle sud de ABC (par rapport à A).
- 2. Montrer que BS = CS = IS. Le cercle de centre S passant par B, C, I est appelé le cercle antarctique de ABC (par rapport à A).
- 3. Montrer que les triangles ABS et BI A S sont semblables.