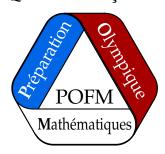
PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES



Test du 12 mai 2021

Durée: 4H

Instructions

- ▶ Rédigez les différents problèmes sur des copies distinctes. Sur chaque copie, écrivez en haut à gauche votre nom en majuscules, votre prénom en minuscules. Écrivez votre classe et le numéro du problème traité en haut à droite.
- ▶ Le groupe Junior est constitué des élèves nés en 2006 ou après. Ces élèves doivent traiter les exercices 1 à 4.
- ▶ Le groupe Senior est constitué des élèves nés en 2005 ou avant.
 Ces élèves doivent traiter les exercices 5 à 7.
- Don demande des solutions **complètement rédigées**, où toute affirmation est soigneusement **justifiée**. La notation tiendra compte de la **clarté** et de la **précision** de la copie.
 - Travaillez d'abord au brouillon, et rédigez ensuite au propre votre solution, ou une tentative, rédigée, de solution contenant des résultats significatifs pour le problème. Ne rendez pas vos brouillons : ils ne seraient pas pris en compte.
- ▶ Une solution complète rapportera plus de points que plusieurs tentatives inachevées. Il vaut mieux terminer un petit nombre de problèmes que de tous les aborder.
- ▶ Règles, équerres et compas sont autorisés. Les rapporteurs sont interdits. Les calculatrices sont interdites, ainsi que tous les instruments électroniques.
- Dans le cas d'un exercice de géométrie, faire (au moins) une figure pertinente sur une feuille séparée. Cette figure devra être propre, grande, et la propriété que l'on cherche à démontrer devra être apparente : par exemple, si l'on souhaite démontrer que des points sont alignés (ou cocycliques), il faut tracer la droite (ou le cercle) qui passe par ces points.
- ⊳ Si l'élève ne respecte pas la consigne précédente, il perdra automatiquement un point à l'exercice concerné (on ne donne pas de note strictement négative).

Chaque exercice est noté sur 7 points.

Énoncés Junior

Exercice 1. Soit ABCDE un pentagone convexe tel que $\widehat{ABE} = \widehat{ACE} = \widehat{ADE} = 90^\circ$ et BC = CD. Enfin, soit K un point sur la demi-droite [AB) tel que AK = AD, et soit L un point sur la demi-droite [ED) tel que EL = BE. Démontrer que les points B, D, K et L appartiennent à un même cercle de centre C.

Exercice 2. Trouver tous les quadruplets d'entiers relatifs (a, b, c, p) tels que p soit un nombre premier et pour lesquels

$$73p^2 + 6 = 9a^2 + 17b^2 + 17c^2.$$

Exercice 3. Pour s'entraîner en prévision du dernier test POFM de l'année, Jean-Baptiste et Marie-Odile ont collecté 100 problèmes de mathématiques, et s'attellent désormais à la confection d'un programme de révisions. Pendant les 100 jours qui les séparent du test POFM, chacun devra traiter un problème par jour. On note x le nombre de problèmes que Jean-Baptiste a traités strictement avant Marie-Odile, et y le nombre de problèmes que Marie-Odile a traités strictement avant Jean-Baptiste. Enfin, on dit que le programme de révisions est *équitable* si x = y.

Démontrer qu'il existe au moins $100! \times (2^{50} + (50!)^2)$ programmes équitables.

Exercice 4. Trouver tous les nombres réels x et y tels que

$$(x - \sqrt{x^2 + 1})(y - \sqrt{y^2 + 1}) = 1$$
 et $(x^2 + y + 2)(y^2 + x + 2) = 8$.

Énoncés Senior

Exercice 5. Soit ABCD un quadrilatère convexe dont les angles en B et en D sont obtus, et dont les angles en A et en C sont égaux l'un à l'autre. Soit E et F les symétriques de A par rapport à (BC) et (CD). Soit K et E les points d'intersection de E0 avec E1. Démontrer que les cercles circonscrits aux triangles E1 et E2 sont tangents l'un à l'autre.

Exercice 6. Pour tout entier $k \ge 0$, on note F_k le $k^{\text{ème}}$ nombre de Fibonacci, défini par $F_0 = 0$, $F_1 = 1$, et $F_k = F_{k-2} + F_{k-1}$ lorsque $k \ge 2$. Soit $n \ge 2$ un entier, et soit S un ensemble d'entiers ayant la propriété suivante :

Pour tout entier k tel que $2 \le k \le n$, l'ensemble S contient deux entiers x et y tels que $x - y = F_k$.

Quel est le plus petit nombre possible d'éléments d'un tel ensemble S?

Exercice 7. Trouver les fonctions $f: \mathbb{N}_{\geq 1} \to \mathbb{N}_{\geq 0}$ vérifiant les deux conditions suivantes :

- 1. f(xy) = f(x) + f(y) pour tous les entiers $x \ge 1$ et $y \ge 1$;
- 2. il existe une infinité d'entiers $n \geqslant 1$ tels que l'égalité f(k) = f(n-k) est vraie pour tout entier k tel que $1 \leqslant k \leqslant n-1$.

On note $\mathbb{N}_{\geqslant 0}$ l'ensemble des entiers supérieurs ou égaux à 0, et $\mathbb{N}_{\geqslant 1}$ l'ensemble des entiers supérieurs ou égaux à 1.