Angles et droites du triangle

Niveau collège - débutants

13 octobre 2020

Quelques éléments de théorie

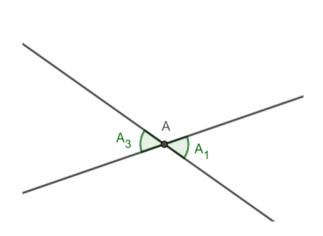


FIGURE 1 – Des angles opposés par le sommet ont la même amplitude : $\widehat{A}_1 = \widehat{A}_3$

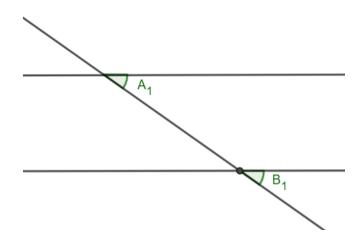


FIGURE 2 – Lorsqu'une droite intersecte deux droites parallèles, elle forme des angles correspondants. Des angles correspondants ont la même amplitude : $\widehat{A}_1 = \widehat{B}_1$

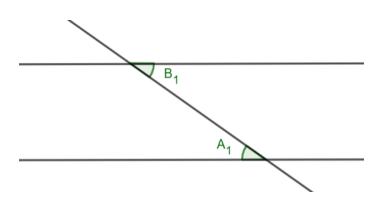


FIGURE 3 – Des angles alternes-internes ont la même amplitude : $\widehat{A}_1 = \widehat{B}_1$

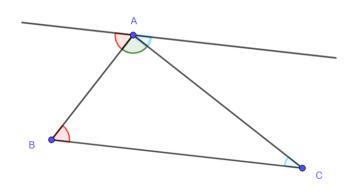


FIGURE 4 – La somme des angles d'un triangle fait 180°

L'inégalité triangulaire : pour tout triangle ABC, les inégalités suivantes sont toujours vrai : $AB \le AC + CB$, $AC \le AB + CB$ et $BC \le BA + AC$.

Problèmes

- **P 1.** Soit le triangle ABC. Si $\widehat{ABC} = 60^{\circ}$ et $\widehat{BAC} = 30^{\circ}$, quelle est la valeur de \widehat{BCA} ?
- **P 2.** Soit le triangle ABC. Si le triangle est isocèle et $\widehat{ABC}=35^\circ$, quelle est la valeur de \widehat{BCA} ?
- **P 3.** Soit l'angle \widehat{xOy} , soit [OP) sa bissectrice intérieure et un point P sur cette bissectrice. Démontrer que P se situe à la même distance par rapport aux deux cotés de l'angle.
- ${\bf P}$ 4. Démontrer que dans deux triangles égaux ABC et A'B'C':

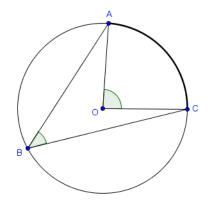


FIGURE 5 – L'angle inscrit au cercle \widehat{ABC} a comme amplitude la moitie de l'angle au centre $\widehat{AOC}:\widehat{AOC}=2*\widehat{ABC}$

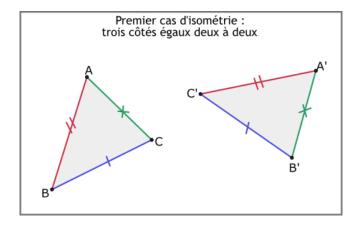


Figure 7 – Triangles isométriques - le cas CCC

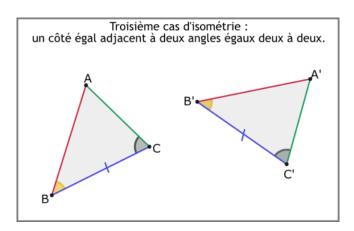


FIGURE 9 – Triangles isométriques - le cas ACA

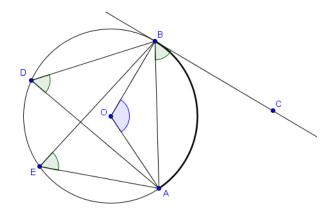


FIGURE 6 – Si BC est tangente au cercle de centre O, alors : $\widehat{AEB} = \widehat{ADB} = \widehat{ABC} = \frac{\widehat{AOB}}{2}$

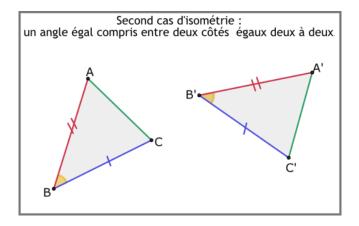


FIGURE 8 – Triangles isométriques - le cas CAC

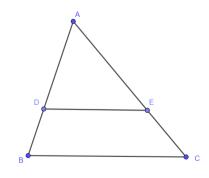


FIGURE 10 – Théorème de Thalès : si $DE \parallel BC$ alors $\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}$. Nous avons également la réciproque : si $\frac{AD}{AB} = \frac{AE}{AC}$ alors $DE \parallel BC$.

- a) les médianes [AM] et [A'M'] sont égales;
- b) les bissectrices intérieurs [AD] et [A'D'] sont égales;
- c) les hauteurs [AP] et [A'P'] sont égales;
- **P 5.** Dans le triangle ABC nous construisons la médiane [AM]. Soit $N \in (BC)$ ainsi que CN = 2 * AN et soit $\{P\} = AM \cap BN$. Démontrez que $[AP] \equiv [PM]$.
- **P 6.** Dans le triangle ABC nous construisons les médianes [AM] et [BN]. Démontrez que $MN = \frac{AB}{2}$.
- **P 7.** Sur une droite d chaque point a une couleur bleue ou rouge. Démontrez qu'ils existent trois points A, B, C sur la droite d, coloriés avec la même couleur, ainsi que B est le milieu du segment [AC].
- **P 8.** Dans un cercle de centre O se trouvent 13 points distincts. Démontrez qu'ils existent au moins deux points A, B parmi les 13 ainsi que $\widehat{AOB} \leq 30^{\circ}$.
- **P 9.** Nous considérons 7 segments de longueur entre 200 et 2019. Démontrez que parmi les 7 segments il y en a trois qui peuvent former un triangle.

- **P 10.** Soit un triangle ABC, rectangle en A. Le point D est le milieu du segment [BC], E et F sont les symétriques de D par rapport à (AB) et (AC). Démontrez que les points E, A, F sont colinéaires.
- **P 11.** Les angles adjacents \widehat{AOB} et \widehat{BOC} ont les amplitudes de 108°, respectivement 68°. Les demi-droites [OM), [ON) sont les bissectrices intérieures des \widehat{AOB} et \widehat{BOC} . La demi-droite [OP) est la bissectrice intérieure de \widehat{MON} . La demi-droite [OD) est l'opposée de la demi-droite [OP), et le point $E \in \widehat{AOD}$ a la propriété que $\widehat{DOE} = 10^\circ$. Démontrez que B, O, E sont colinéaires.
- **P 12.** L'angle \widehat{xOy} a l'amplitude de 50°. Soit P un point à l'intérieur du triangle, et A, B les symétriques de P par rapport à (Ox) et (Oy). Démontrez que :
 - \bullet OAB est un triangle isocèle, et
 - calculez l'amplitude de \widehat{AOB} .
- **P 13.** Dans le triangle isocèle ABC, avec $(AB) \equiv (AC)$, l'un des angles a l'amplitude de 40° . Soit $D \in AB$ ainsi que $CD \perp AC$. A l'extérieur du triangle ACD nous construisons l'angle $\widehat{CDE} = 20^{\circ}$, avec $E \in (AC)$. Est-ce que $BC \parallel DE$?
- **P 14.** Soit le triangle ABC avec $\widehat{CAB} = 90^{\circ}$. Démontrez que BC = 2*AC si et seulement si $\widehat{ABC} = 30^{\circ}$.
- **P 15.** Soit le triangle ABC avec la médiane [AM] $(M \in [BC])$. Démontrez que $AM = \frac{BC}{2}$ si et seulement si $\widehat{CAB} = 90^{\circ}$.
- **P 16.** Soit le triangle ABC avec la médiane [AM] $(M \in [BC])$. Démontrez que $AM < \frac{AC + AB}{2}$.
- **P 17.** Soit l'angle $\widehat{AOB} < 90^{\circ}$. Soit les demi-droites perpendiculaires $\widehat{[OC)}$ et $\widehat{[OD)}$, avec $C \in \widehat{AOD}$. Démontrez que l'angle formé par les bissectrices intérieures des \widehat{AOD} et \widehat{BOC} a une amplitude constante.
- **P 18.** On considère une droite xy et deux points A et B situés de part et d'autre de la droite xy. Trouvez sur xy un point M tel que la distance AM + MB soit la plus petite possible.
- **Exercice 19.** * Soit l'angle \widehat{AOB} . et un point $C \in \widehat{AOB}$. Déterminez $M \in [OA)$ et $N \in [OB)$ ainsi que CM + CN + MN soit minimal.
- Exercice 20. ** Soit le triangle ABC avec la médiane [AM] $(M \in [BC])$. Si $\widehat{ACB} = 15^{\circ}$ et $\widehat{AMB} = 45^{\circ}$, déterminez l'amplitude de \widehat{BAC} . (Olympiade Nationale 2010, Roumanie)
- **Exercice 21.** ** Soit le triangle isocèle ABC de base [BC], avec $\widehat{ABC} > 30^{\circ}$. A l'intérieur du triangle ABC nous considérons le point M ainsi que $\widehat{MBC} = 30^{\circ}$ et $\widehat{MAB} = \frac{3}{4} * \widehat{BAC}$. Déterminez l'amplitude de \widehat{AMC} . (Olympiade Nationale 2011, Roumanie)
- **Exercice 22.** ** Soit le triangle équilatéral ABC et $X \in [CA)$ avec la propriété $A \in [CX]$. Sur la bissectrice de \widehat{BAX} nous considérons le point D et sur la demi-droite [AB) nous considérons le point E ayant la propriété AE + EC = DA + AC. Démontrez que la demi-droite [CD) est la bissectrice de l'angle \widehat{ACE} . (Olympiade Nationale 2012, Roumanie)
- Exercice 23. ** Soit le triangle ABC avec AB = AC et $\widehat{BAC} = 90^{\circ}$. Soit $D \in [BC]$ ayant la propriété $AD \perp BC$. La bissectrice intérieure de \widehat{ABC} va intersecter la droite (AD) dans le point I. Démontrez que BA + AI = BC. (Olympiade Nationale 2013, Roumanie)
- **Exercice 24.** * Soit le triangle ABC isocèle (AB = AC) et nous savons que l'angle formé par les deux bissectrices intérieures des deux angles égaux $(\widehat{B}, \widehat{C})$ est cinq fois plus grand que l'angle \widehat{A} . Calculez les amplitudes des trois angles $\widehat{A}, \widehat{B}, \widehat{C}$.
- **Exercice 25.** * Soit le triangle ABC et les hauteurs [BB'] et [CC'], avec $B' \in (AC)$ et $C' \in (AB)$. Soit M le milieu de [BC]. Démontrez que :
 - $[B'M] \equiv [C'M]$,
 - si $AM \perp B'C'$ alors le triangle ABC est isocèle.

Exercice 26. * A l'extérieur du triangle ABC nous construisons les tringles droits isocèles ABD et ACE, avec $\widehat{ADB} = \widehat{AEC} = 90^{\circ}$. Démontrez que le triangle MDE est droit isocèle, où M est le milieu de [BC].