

Préparation Olympique Française de Mathématiques 2017-2018

Envoi Numéro 2

À renvoyer au plus tard le 15 décembre

Les consignes suivantes sont à lire attentivement :

Le groupe B est constitué des élèves nés en 2003 ou après. Les autres élèves sont dans le groupe A.

- Les exercices classés "Groupe B" ne sont à chercher que par les élèves du groupe B.
- Les exercices classés "communs" sont à chercher par tout le monde.
- Les exercices classés "Groupe A" ne sont à chercher que par les élèves du groupe A.
- Les exercices doivent être cherchés de manière individuelle.
- Utiliser des feuilles différentes pour des exercices différents.
- Respecter la numérotation des exercices.
- Bien préciser votre nom en lettres capitales, et votre prénom en minuscules sur chaque copie.

Animath, Préparation Olympique Française de Mathématiques, 11-13 rue Pierre et Marie Curie, 75005 Paris.

olymp@animath.fr

Exercices du groupe B

Exercice 1. Soit Γ_1 et Γ_2 deux cercles se coupant en A et B distincts. Notons O le centre de Γ_1 . Soit C un point de Γ_1 , soit D, E les intersections respectives de (AC) et de (BC) avec Γ_2 .

Montrer que (OC) et (DE) sont perpendiculaires.

Exercice 2. Soit un quadrilatère ABCD convexe. On se donne E, F deux points tels que E, B, C, F soient alignés dans cet ordre. On suppose de plus que $\widehat{BAE} = \widehat{CDF}$ et $\widehat{EAF} = \widehat{FDE}$. Montrer que $\widehat{FAC} = \widehat{EDB}$.

Exercice 3. Soit [AB] le diamètre d'un demi-cercle sur lequel on prend deux points C et D. Soit S l'intersection de (AC) et (BD) et T le pied de la perpendiculaire à [AB] issue de S.

Montrer que (ST) est la bissectrice de l'angle \widehat{CTD} .

Exercices Communs

Exercice 4. Soit ABC un triangle tel que AB < AC, H son orthocentre, Γ son cercle circonscrit, d la tangente à Γ en A. On considère le cercle de centre B passant par A. Il coupe d en D et (AC) en E.

Montrer que D, E, H sont alignés.

Exercice 5. Soit ABC un triangle, Γ son cercle circonscrit. Soit ω_A le cercle inscrit intérieurement à (AB), (AC) et à Γ. On note T_A le point de tangence de Γ avec ω_A . On définit de même T_B et T_C .

Montrer que (AT_A) , (BT_B) et (CT_C) sont concourantes.

Exercice 6.

Soit O le centre d'un polygone régulier à 18 côtés de sommets A_1, \ldots, A_{18} . Soit B le point de $[OA_1]$ tel que $\widehat{BA_2O} = 20^\circ$ et C le point de $[OA_2]$ tel que $\widehat{CA_1O} = 10^\circ$.

Montrer que BCA₂A₃ sont cocycliques.

^{1.} c'est-à-dire que les droites (AB) et (CD) sont parallèles ou se coupent à l'extérieur des segments [AB] et [CD] et les droites (BC) et (DA) sont parallèles ou se coupent à l'extérieur des segments [BC] et [DA]

Exercices du groupe A

Exercice 7. Soit ABC un triangle tel que $AB \neq AC$. Soit E tel que AE = BE et (BE) perpendiculaire à (BC) et soit F tel que AF = CF et (CF) perpendiculaire à (BC). Soit D le point de (BC) tel que (AD) soit tangente au cercle circonscrit à ABC en A. Montrer que les points D, E, F sont colinéaires.

Exercice 8. Soit ABC un triangle.

Pour un point P de (BC) donné, on note E(P) et F(P) les deuxièmes points d'intersection des droites (AB) et (AC) avec le cercle de diamètre [AP]. Soit T(P) l'intersection des tangentes à ce cercle en E(P) et F(P).

Montrer que quand P varie sur (BC), le lieu géométrique de T(P) est une droite.

Exercice 9. Soit ABC un triangle, O le centre de son cercle circonscrit. Soit P un point sur (AO) et D, E, F les projections orthogonales de P sur (AB), (BC) et (CA). Soit X et Y les intersections des cercles circonscrits à DEF et à BCP.

Montrer que $\widehat{BAX} = \widehat{YAC}$