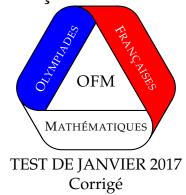
OLYMPIADES FRANÇAISES DE MATHÉMATIQUES



Exercice 1. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que

$$f(a^2) - f(b^2) \le (f(a) + b)(a - f(b)),$$
 pour tous $a, b \in \mathbb{R}$.

<u>Solution de l'exercice 1</u> En prenant (a,b)=(0,0), on obtient $f(0)^2\leqslant 0$ donc f(0)=0. En prenant (a,b)=(x,0) puis (a,b)=(0,x), on trouve que $f(x^2)=xf(x)$. En remplaçant dans l'équation initiale, on en déduit que $af(a)-bf(b)\leqslant (f(a)+b)(a-f(b),\operatorname{donc} f(a)f(b)\leqslant ab$ pour tous a,b. D'autre part, $f(x^2)=xf(x)$ entraîne que xf(x)=-xf(-x), donc f est impaire. En remplaçant b par -b dans $f(a)f(b)\leqslant ab$, on en déduit que f(a)f(b)=ab pour tous a et b. En particulier, $f(1)^2=1$ donc f(1)=1 ou f(1)=-1. Comme f(a)f(1)=a pour tout a, on en déduit que f(x)=x ou f(x)=-x pour tout x.

Réciproquement, on vérifie facilement que les fonctions f(x) = x et f(x) = -x sont solutions de l'équation fonctionnelle.

 $Exercice\ 2$. Soit S l'ensemble des nombres à deux chiffres qui ne contiennent pas le chiffre 0. Deux nombres de S sont dits amis si leurs plus grands chiffres sont égaux, et si la différence entre leurs plus petits chiffres est égale à 1. Par exemple, 68 et 85 sont amis, 78 et 88 sont amis, mais 58 et 75 ne sont pas amis.

Déterminer le plus grand entier m tel qu'il existe une partie T de S possédant m éléments, telle que deux éléments quelconques de T ne soient pas amis.

<u>Solution de l'exercice 2</u> Réponse : 45. On peut prendre pour *T* l'ensemble des nombres dont le plus petit chiffre est impair.

Réciproquement, si $x=\overline{ab}$ avec $1\leqslant b< a\leqslant 9$ alors x et x+1 sont amis. Si $x=\overline{ab}$ avec $2\leqslant a< b\leqslant 9$ et a pair, alors x et x+10 sont amis. On a ainsi trouvé 36 paires d'amis disjointes. Par conséquent, parmi les 72 nombres $\geqslant 21$, T ne peut contenir qu'au plus 36 nombres, donc $|T|\leqslant 9+36=45$.

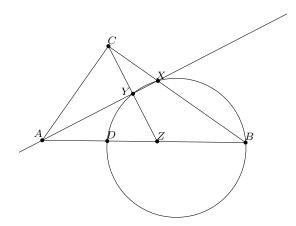
Exercise 3. Soit $P(x) = x^4 - x^3 - 3x^2 - x + 1$. Montrer qu'il existe une infinité d'entiers n tels que $P(3^n)$ ne soit pas premier.

Solution de l'exercice 3 On observe que $3^2 \equiv -1 \pmod{5}$ et $3^4 \equiv 1 \pmod{5}$. Soit $n \geqslant 1$. Soit $x = 3^{4n+1}$, alors $x = (3^4)^n \times 3 \equiv 3 \pmod{5}$, donc $P(x) \equiv 3^4 - 3^3 - 3 + 1 \equiv 1 + 3 + 3 - 3 + 1 \equiv 0 \pmod{5}$.

D'autre part, $P(x) > x^4 - x^3 - 3x^3 - x^3 = x^3(x-5) > x-5 > 3^{4n} - 5 > 5$, donc $P(3^{4n+1})$ n'est pas premier.

Exercice 4. Soit ABC un triangle rectangle en C. Soient D le pied de la hauteur issue de C, et Z le point de [AB] tel que AC = AZ. La bissectrice de \widehat{BAC} coupe (CB) et (CZ) en X et Y respectivement. Montrer que les quatre points B, X, Y, D sont sur un même cercle.

Solution de l'exercice 4



CAZ est isocèle en A donc (AY), qui est la bissectrice de \widehat{CAZ} , est perpendiculaire à (CZ). Donc ADYC est cyclique.

On a alors
$$\widehat{DYX} = 180^{\circ} - \widehat{AYD} = 180^{\circ} - \widehat{ACD} = 180^{\circ} - \widehat{XBD}$$
.

Exercice 5. Soit $a \in [0; 1]$. On définit la suite (x_n) par $x_0 = a$ et $x_{n+1} = 1 - |1 - 2x_n|$, pour tout $n \ge 0$.

Prouver que la suite (x_n) est périodique à partir d'un certain rang si et seulement si a est un nombre rationnel.

(Note : on dit que (x_n) est périodique à partir d'un certain rang s'il existe des entiers T > 0 et $n \ge 0$ tels que $x_{k+T} = x_k$ pour tout $k \ge n$.)

<u>Solution de l'exercice 5</u> On note tout d'abord que si $x_n \in [0;1]$ alors $-1 \le 1 - 2x_n \le 1$, d'où $0 \le x_{n+1} \le 1$. Puisque $x_0 \in [0;1]$, on déduit ainsi par récurrence que $x_n \in [0;1]$ pour tout $n \ge 0$.

- Supposons que a soit un nombre rationnel. Une récurrence immédiate assure alors que, pour tout $n \ge 0$, x_n est un nombre rationnel.

Pour tout $n \ge 0$, on pose $x_n = \frac{p_n}{q_n}$, avec p_n et q_n entiers positifs et premiers entre eux. Alors

$$x_{n+1} = \frac{q_n - |q_n - 2p_n|}{q_n}$$
, d'où $q_{n+1} \le q_n$.

La suite (q_n) , suite décroissante d'entiers naturels, est alors stationnaire à partir d'un certain rang. Il existe donc des entiers q > 0 et $N \ge 0$ tels que $q_n = q$ pour tout $n \ge N$.

Pour tout $n \ge N$, le nombre x_n est donc un nombre rationnel de [0;1] dont le dénominateur vaut q. Or, il n'y a qu'un nombre fini de tels rationnels et il existe donc $n_0 \ge N$ et k > 0 tels que $x_{n_0+k} = x_{n_0}$. La définition par récurrence de (x_n) assure alors que $(x_n)_{n \ge n_0}$ est périodique de période k.

- Supposons maintenant qu'il existe des entiers k > 0 et $N \ge 0$ tels que $x_{n+k} = x_n$ pour tout $n \ge N$.

Pour $n \ge 0$, on a $x_{n+1} = 2x_n$ ou $x_{n+1} = 2 - 2x_n$ selon que $1 - 2x_n$ est positif ou négatif. On peut donc poser $x_{n+1} = a + 2bx_n$, où a est un entier et $b = \pm 1$. On prouve alors facilement par récurrence que, pour tout $i \ge 0$, il existe un entier a_i tel que $x_{N+i} = a_i + 2^i b_i x_N$ avec $b_i = \pm 1$.

En particulier, on a $x_N=x_{N+k}=a_k+2^kb_kx_N$. Puisque $2^kb_k=\pm 2^k\neq 1$, cette équation du premier degré en x_N admet une unique solution $x_N=\frac{a_k}{1-2^kb_k}$. Ainsi, x_N est un nombre rationnel. Or, il est facile de vérifier que, pour $m\geq 0$, si x_{m+1} et rationnel alors x_m est rationnel donc, par récurrence descendante, on déduit que $a=x_0$ est rationnel.

Exercice 6. Prouver qu'il existe un entier n > 0 tel que parmi les 2016 chiffres de droite dans l'écriture décimale de 2^n , il y a au moins 1008 chiffres 9.

<u>Solution de l'exercice 6</u> On peut légitimement se demander quand trouver des 9 à la droite de l'écriture décimale de 2^n . On peut penser que c'est quand la puissance de 2 est légèrement inférieure à une puissance de 10. On va donc chercher des nombres de la forme $2^n + 1$ qui sont divisibles par 5 selon une puissance élevée. Pour un tel nombre, en multipliant par la puissance de 2 adéquate, on obtiendra un nombre de la forme $2^k(2^n + 1) = 2^{n+k} + 2^k$ divisible par une grande puissance de 10, et il suffira de retrancher le 2^k en question pour obtenir le type de puissance de 2 cherché.

<u>Lemme.</u> Pour tout entier $k \ge 1$, le nombre $a_k = 2^{2 \cdot 5^{k-1}} + 1$ est divisible par 5^k .

Preuve du lemme. On raisonne par récurrence sur k:

- Pour k = 1, on a $a_1 = 5$ qui est bien divisible par 5.
- Supposons le résultat établi pour un certain $k \ge 1$.

Posons $a = 4^{5^{k-1}} = a_k - 1$. On note qu'alors $a = -1 \mod 5$.

On a alors $a_{k+1} = 4^{5^k} + 1 = a^5 + 1 = (a+1)(a^4 - a^3 + a^2 - a + 1)$.

D'après l'hypothèse de récurrence, on a $a+1=0 \mod 5^{k-1}$.

D'autre part, puisque $a = -1 \mod 5$, on a $a^4 - a^3 + a^2 - a + 1 = 0 \mod 5$.

Ainsi, a_{k+1} est divisible par 5^k , ce qui achève la récurrence.

Comme prévu, on en déduit que, pour tout $k \ge 1$, le nombre $2^{2k}(2^{2 \cdot 5^{2k-1}} + 1) = 2^{2k+2 \cdot 5^{2k-1}} + 2^{2k}$ est divisible par 10^{2k} . Son écriture décimale se termine donc par au moins 2k chiffres 0.

Or, pour $k \ge 1$, on a $2^{2k} < 10^k$. Ainsi, l'écriture décimale de 2^{2k} n'utilise pas plus de k chiffres. Par suite, parmi les 2k chiffres de droite de l'écriture décimale de $2^{2k+2\cdot 5^{2k-1}}$, il y a au moins k chiffres 9.

Le résultat demandé correspond à k=1008.