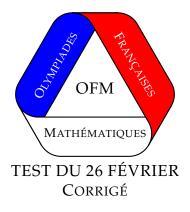
OLYMPIADES FRANÇAISES DE MATHÉMATIQUES



Exercice 1. Les cases d'une grille à 10 lignes et 10 colonnes sont coloriées en blanc et en noir. Un coloriage de ces cases est dit *homogène* s'il contient un carré 3×3 monochrome, et *inhomogène* sinon. Montrer qu'il existe plus de coloriages inhomogènes que de coloriages homogènes.

<u>Solution de l'exercice 1</u> Il y a 2^{100} coloriages possibles. Si c est un carré 3×3 , le nombre de coloriages tels que c soit monochrome est égal à $2 \times 2^{91} = 2^{92}$. Or, il y a 64 carrés 3×3 , donc il y a au plus $64 \times 2^{92} = 2^{98}$ coloriages homogènes.

Exercice 2. Montrer que si a, b, c sont des nombres réels positifs vérifiant a + b + c = 1 alors

$$\frac{7+2b}{1+a} + \frac{7+2c}{1+b} + \frac{7+2a}{1+c} \geqslant \frac{69}{4}.$$

<u>Solution de l'exercice 2</u> Comme 7 + 2b = 5 + 2(1 + b), on écrit le membre de gauche sous la forme

$$5\left(\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}\right) + 2\left(\frac{1+b}{1+a} + \frac{1+c}{1+b} + \frac{1+a}{1+c}\right).$$

En utilisant l'inégalité $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geqslant \frac{9}{x+y+z}$, on minore le premier terme par $\frac{45}{4}$. En utilisant l'inégalité $x+y+z \geqslant 3\sqrt[3]{xyz}$, on minore le second terme par 6. L'assertion à démontrer en découle.

 $E_{xercice\ 3}$. Soit ABC un triangle, et M le milieu de [BC]. On note I_b et I_c les centres des cercles inscrits à AMB et AMC. Montrer que le second point d'intersection des cercles circonscrits aux triangles ABI_b et ACI_c se situe sur la droite (AM).

<u>Solution de l'exercice 3</u> Soit T l'intersection entre le cercle de diamètre [BC] et la demi-droite [MA). Il suffit de montrer que T appartient au cercle ABI_b (par symétrie des rôles de B et C, ceci montrera qu'il appartient également au cercle ACI_c).

Comme \widehat{BTC} est droit, on a $\widehat{ATB} = 90^{\circ} + \frac{1}{2}\widehat{AMB} = \widehat{AI_bB}$.

Exercice 4. Soit $n \ge 1$ un entier. On suppose qu'il existe exactement 2005 couples (x,y) d'entiers naturels tels que $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$. Montrer que n est le carré d'un entier. N.B. Si $x \ne y$ alors $(x,y) \ne (y,x)$.

Solution de l'exercice 4 On remarque que x > n et y > n.

L'équation s'écrit xy = n(x+y), ou encore $n^2 = (x-n)(y-n)$. On en déduit qu'il y a exactement 2005 couples d'entiers naturels (u,v) tels que $n^2 = uv$.

Si $n^2 = uv$ alors u est un diviseur de n^2 . Réciproquement, si u est un diviseur de n^2 alors l'équation $n^2 = uv$ détermine uniquement v. On en déduit que n^2 admet exactement 2005 diviseurs.

Ecrivons $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$ avec p_i premiers distincts et α_i entiers. On a donc $n^2=p_1^{2\alpha_1}\cdots p_r^{2\alpha_r}$. On sait que le nombre de diviseurs de n^2 est égal à $(2\alpha_1+1)\cdots (2\alpha_r+1)$. Or, la décomposition en facteurs premiers de 2005 est 5×401 , donc soit r=1 et $2\alpha_1+1=2005$, soit r=2 et $2\alpha_1+1=5$, $2\alpha_2+1=401$. Dans tous les cas, les α_i sont pairs donc n est un carré parfait.