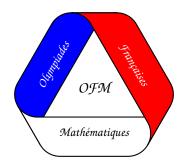
Olympiades Françaises de Mathématiques 2013-2014



Envoi Numéro 3 – Corrigé

Exercices du groupe B

Exercice 1. Existe-t-il des réels a, b, c, d > 0 et e, f, g, h < 0 vérifiant simultanément

$$ae + bc > 0$$
, $ef + cg > 0$, $fd + gh > 0$ et $da + hb > 0$?

<u>Solution de l'exercice 1</u> Non, il n'en existe pas. Par l'absurde : supposons qu'il existe de tels réels.On commence par réécrire les inégalités, mais avec uniquement des termes positifs. On a donc

$$bc>\alpha(-e)\ \text{et}\ (-e)(-f)>c(-g)\ \text{et}\ (-g)(-h)>(-f)d\ \text{et}\ d\alpha>(-h)b$$

Si l'on multiplie toutes ces inégalités membres à membres (et, comme tout est positif, il n'y a aucun danger), il vient abcdefgh > abcbdefgh, d'où la contradiction cherchée.

Exercice 2. Soit a, b, c des réels tels que $-1 \le ax^2 + bx + c \le 1$ pour x = -1, x = 0 et x = 1. Prouver que

$$-\frac{5}{4}\leqslant \alpha x^2+bx+c\leqslant \frac{5}{4} \text{ pour tout r\'eel } x\in [-1,1].$$

Solution de l'exercice 2 Posons $P(x) = ax^2 + bx + c$. Alors P(-1) = a - b + c, P(0) = c et P(1) = a + b + c. Et, d'après l'énoncé, on a $|P(-1)| \le 1$, $|P(0)| \le 1$ et $|P(1)| \le 1$. Or, pour tout réel x, on vérifie directement que

$$P(x) = \frac{x(x+1)}{2}P(1) - \frac{x(1-x)}{2}P(-1) + (1-x^2)P(0)$$
 (1).

- Soit $x \in [0; 1]$. D'après (1) et l'inégalité triangulaire, il vient

$$\begin{split} |\mathsf{P}(\mathsf{x})| & \leqslant & \frac{\mathsf{x}(\mathsf{x}+1)}{2} |\mathsf{P}(1)| + \frac{\mathsf{x}(1-\mathsf{x})}{2} |\mathsf{P}(-1)| + (1-\mathsf{x}^2) |\mathsf{P}(0)| \\ & \leqslant & \frac{\mathsf{x}(\mathsf{x}+1)}{2} + \frac{\mathsf{x}(1-\mathsf{x})}{2} + (1-\mathsf{x}^2) \\ & = & -\mathsf{x}^2 + \mathsf{x} + 1 \\ & = & \frac{5}{4} - (\mathsf{x} - \frac{1}{2})^2 \end{split}$$

Et ainsi $|P(x)| \leq \frac{5}{4}$.

- Soit $x \in [-1; 0]$. D'après (1) et l'inégalité triangulaire, il vient cette fois

$$\leq -\frac{x(x+1)}{2}|P(1)| - \frac{x(1-x)}{2}|P(-1)| + (1-x^2)|P(0)|$$

$$\leq -\frac{x(x+1)}{2} - \frac{x(1-x)}{2} + (1-x^2)$$

$$= -x^2 - x + 1$$

$$= \frac{5}{4} - (x + \frac{1}{2})^2$$

Et ainsi $|P(x)| \leq \frac{5}{4}$, à nouveau.

Finalement, pour tout $x \in [-1; 1]$, on a $|P(x)| \leq \frac{5}{4}$.

Exercice 3. Prouver que, pour tout réel $a \ge 0$, on a

$$a^3 + 2 \geqslant a^2 + 2\sqrt{a}$$
.

Solution de l'exercice 3 Pour tout réel $a \ge 0$, on a

$$\begin{aligned} \mathbf{a}^3 - \mathbf{a}^2 - 2\sqrt{\mathbf{a}} + 2 &= \mathbf{a}^2(\mathbf{a} - 1) - 2(\sqrt{\mathbf{a}} - 1) \\ &= \mathbf{a}^2(\sqrt{\mathbf{a}} - 1)(\sqrt{\mathbf{a}} + 1) - 2(\sqrt{\mathbf{a}} - 1) \\ &= (\sqrt{\mathbf{a}} - 1)(\mathbf{a}^2(\sqrt{\mathbf{a}} + 1) - 2). \ (1) \end{aligned}$$

Or:

- Si $a \ge 1$ alors $\sqrt{a} \ge 1$ et $a^2 \ge 1$. Ainsi, on a $\sqrt{a} 1 \ge 0$ et $a^2(\sqrt{a} + 1) \ge 2$. Par suite, chacun des facteurs de (1) est positif, ce qui assure que le produit est positif.
- Si $a \le 1$ alors $\sqrt{a} \le 1$ et $a^2 \le 1$. Ainsi, on a $\sqrt{a} 1 \le 0$ et $a^2(\sqrt{a} + 1) \le 2$. Par suite, chacun des deux facteurs de (1) est négatif, et le produit est donc encore positif.

Finalement, pour tout réel $a \ge 0$, on a $a^3 - a^2 - 2\sqrt{a} + 2 \ge 0$ ou encore $a^3 + 2 \ge a^2 + 2\sqrt{a}$.

Exercices Communs

Exercice 4. Prouver que si n est un entier strictement positif, l'expression

$$\frac{\sqrt{n + \sqrt{0}} + \sqrt{n + \sqrt{1}} + \sqrt{n + \sqrt{2}} + \cdots \sqrt{n + \sqrt{n^2 - 1}} + \sqrt{n + \sqrt{n^2}}}{\sqrt{n - \sqrt{0}} + \sqrt{n - \sqrt{1}} + \sqrt{n - \sqrt{2}} + \cdots \sqrt{n - \sqrt{n^2 - 1}} + \sqrt{n - \sqrt{n^2}}}$$

est indépendante de n.

Solution de l'exercice 4 En calculant le carré de chacun des deux membres, on déduit que, pour tous réels a, b tels que $0 \le b \le a$, on a

$$\sqrt{a+\sqrt{a^2-b^2}}=\sqrt{\frac{a+b}{2}}+\sqrt{\frac{a-b}{2}}.$$

En particulier, pour tous entiers naturels n et m, avec $m \le n^2$, on a

$$\sqrt{n+\sqrt{m}} = \sqrt{\frac{n+\sqrt{n^2-m}}{2}} + \sqrt{\frac{n-\sqrt{n^2-m}}{2}}.$$

Soit n > 0 un entier. On a donc

$$\sum_{m=0}^{n^2} \sqrt{n+\sqrt{m}} = \sum_{m=0}^{n^2} \sqrt{\frac{n+\sqrt{n^2-m}}{2}} + \sum_{m=0}^{n^2} \sqrt{\frac{n-\sqrt{n^2-m}}{2}}$$

D'où, après réindexation :

$$\sum_{m=0}^{n^2} \sqrt{n + \sqrt{m}} = \sum_{m=0}^{n^2} \sqrt{\frac{n + \sqrt{m}}{2}} + \sum_{m=0}^{n^2} \sqrt{\frac{n - \sqrt{m}}{2}}$$
$$= \frac{1}{\sqrt{2}} \sum_{m=0}^{n^2} \sqrt{n + \sqrt{m}} + \frac{1}{\sqrt{2}} \sum_{m=0}^{n^2} \sqrt{n - \sqrt{m}}$$

Ainsi
$$(1 - \frac{1}{\sqrt{2}}) \sum_{m=0}^{n^2} \sqrt{n + \sqrt{m}} = \frac{1}{\sqrt{2}} \sum_{m=0}^{n^2} \sqrt{n - \sqrt{m}}$$

$$\sum^{n^2} \sqrt{n + \sqrt{m}}$$

et donc $\frac{\displaystyle\sum_{m=0}^{n^2}\sqrt{n+\sqrt{m}}}{\displaystyle\sum_{n=0}^{n^2}\sqrt{n-\sqrt{m}}}=1+\sqrt{2}$, qui est bien une valeur indépendante de n.

Exercice 5. Soit (a_n) une suite définie par $a_1, a_2 \in [0, 100]$ et

$$a_{n+1} = a_n + \frac{a_{n-1}}{n^2 - 1}$$
 pour tout enter $n \ge 2$.

Existe-t-il un entier n tel que $a_n > 2013$?

Solution de <u>l'exercice 5</u> La réponse est non.

Plus précisément, montrons par récurrence que l'on a $a_n \leq 400$, pour tout $n \geq 0$.

L'inégalité est vraie pour n = 1 et n = 2, d'après l'énoncé.

Supposons qu'elle soit vraie pour tout $k \le n$ pour un certain entier $n \ge 2$.

Pour tout $k \in \{2, \cdots, n\}$, on a $a_{k+1} = a_k + \frac{a_{k-1}}{k^2 - 1}$. En sommant, membre à membre, ces relations et après simplification des termes communs, il vient :

$$a_{n+1} = a_2 + \sum_{k=2}^{n} \frac{a_{k-1}}{k^2 - 1}$$

$$\leq 100 + \sum_{k=2}^{n} \frac{400}{k^2 - 1}$$
, d'après l'hypothèse de récurrence et l'énoncé

$$= 100 + 200 \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k+1} \right)$$

$$=100+200(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1})$$
 après simplification par dominos

$$=400-\frac{200}{n}-\frac{200}{n+1}$$

et donc $a_{n+1} \leqslant 400$, ce qui achève la récurrence.

Exercice 6. Déterminer la plus grande valeur possible et la plus petite valeur possible de

$$\sqrt{4-a^2} + \sqrt{4-b^2} + \sqrt{4-c^2}$$

lorsque a,b,c sont des réels strictement positifs vérifiant $a^2+b^2+c^2=6$.

<u>Solution de l'exercice 6</u> Tout d'abord, on note que si l'on veut que l'expression ait un sens, il faut $a, b, c \in [0; 2]$.

D'après l'inégalité de Cauchy-Schwarz, on a

$$(\sqrt{4-a^2} + \sqrt{4-b^2} + \sqrt{4-c^2})^2 \le 3(4-a^2 + 4 - b^2 + 4 - c^2) = 18,$$

c.à.d.
$$\sqrt{4-a^2} + \sqrt{4-b^2} + \sqrt{4-c^2} \le 3\sqrt{2}$$
, avec égalité pour $a = b = c = \sqrt{2}$.

Ainsi, la plus grande valeur possible est $3\sqrt{2}$.

Cherchons maintenant la valeur minimale :

Sans perte de généralité, on peut supposer que $\alpha\leqslant b\leqslant c.$

De $a^2 + b^2 + c^2 = 6$, on déduit alors que $3a^2 \le 6$, soit donc $0 \le a^2 \le 2$.

D'autre part, si $x, y \ge 0$, on a clairement $\sqrt{x} + \sqrt{y} \le \sqrt{x + y}$, avec égalité si et seulement si x = 0 ou y = 0.

Il vient alors

$$\sqrt{4-a^2} + \sqrt{4-b^2} + \sqrt{4-c^2} \geqslant \sqrt{4-a^2} + \sqrt{8-b^2-c^2} = \sqrt{4-a^2} + \sqrt{2+a^2}$$

et, puisque $0 \le 4 - c^2 \le 4 - b^2$, égalité a lieu si et seulement si $4 - c^2 = 0$, c.à d. c = 2.

Il reste donc à trouver le minimum de l'expression $f(x) = \sqrt{4-x} + \sqrt{2+x}$, lorsque $x \in [0; 2]$.

Or, puisque tout est positif, cela revient à trouver le minimum de

 $(f(x))^2 = 6 + 2\sqrt{(4-x)(2+x)}$, sous les mêmes conditions.

Comme $(4-x)(2+x) = -x^2 + 2x + 8 = 9 - (x-1)^2$, la valeur minimale de $\sqrt{(4-x)(2+x)}$ est $\sqrt{8}$, avec égalité pour x=0.

Ainsi, on a $(f(x))^2 \ge 6 + 2\sqrt{8} = (2 + \sqrt{2})^2$, ou encore $f(x) \ge 2 + \sqrt{2}$, avec égalité pour x = 0.

Par suite, on a $\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\geqslant 2+\sqrt{2}$, avec égalité en particulier pour $(a,b,c)=(0,\sqrt{2},2)$.

Cela assure que la plus petite valeur cherchée est $2 + \sqrt{2}$.

Exercices du groupe A

Exercice 7. Déterminer toutes les fonctions $f : \mathbb{R} \longrightarrow \mathbb{R}^{+*}$ qui vérifient les trois conditions suivantes pour tous réels x et y :

i)
$$f(x^2) = f(x)^2 - 2xf(x)$$
,

ii)
$$f(-x) = f(x-1)$$
,

iii) si
$$1 < x < y$$
 alors $f(x) < f(y)$.

Solution de l'exercice 7 Nous allons prouver que la seule solution est $f: x \longrightarrow x^2 + x + 1$.

Soit f une solution éventuelle du problème.

De i), pour x = 0, on déduit que $f(0) = f^2(0)$. Et, comme f(0) > 0, on a donc f(0) = 1.

Soit x un réel. En utilisant i) pour les valeurs x et -x, il vient

$$f(x)^2 - 2xf(x) = f(x^2) = f(-x)^2 + 2xf(-x),$$

ou encore
$$(f(x) - f(-x))(f(x) + f(-x)) = 2x(f(x) + f(-x)).$$

Puisque f est à valeurs strictement positives, on a $f(x) + f(-x) \neq 0$,

et donc f(x) - f(-x) = 2x.

Finalement, et d'après ii), on a

$$f(x) = f(x-1) + 2x$$
, pour tout réel x. (1)

En particulier, on déduit facilement de (1) que, pour tout entier $n \ge 0$, on a

$$f(n) = f(0) + 2(n + (n - 1) + \dots + 1) = n^2 + n + 1.$$

De ii), on obtient alors que

$$f(n) = n^2 + n + 1$$
 pour tout entier n.

Soit x un réel et $n \ge 0$ un entier.

Pour tout entier k, on a f(x + k) = 2x + 2k + f(x + k - 1).

Après sommation membre à membre de toutes ces relations pour $k=0,1,\cdots,n$, et simplification des termes communs, il vient

$$f(x+n) = 2nx + 2(n + (n-1) + \cdots + 1) + f(x).$$

Et ainsi:

$$f(x + n) = f(x) + 2nx + n^2 + n$$
, pour tout réel x et tout entier $n \ge 0$. (2)

Cela va nous permettre de conclure sur les rationnels positifs :

Soit $x = \frac{m}{n}$, avec m, n > 0 entiers.

D'après (2), on a

$$f((x+n)^2) = f(x^2 + 2m + n^2)$$

= $f(x^2) + 2(2m + n^2)x^2 + (2m + n^2)^2 + 2m + n^2$
= $f^2(x) - 2xf(x) + 2(2m + n^2)x^2 + (2m + n^2)^2 + 2m + n^2$.

Mais, d'après i) et (2), on a également

$$f((x+n)^2) = f^2(x+n) + 2(x+n)f(x+n)$$

= $(f(x) + 2m + n^2 + n)^2 - 2(x+n)(f(x) + 2m + n^2 + n).$

En identifiant les deux dernières expressions de $f((x + n)^2)$, et après un calcul passionnant, on obtient que

$$f(x) = x^2 + x + 1$$
, pour tout rationnel $x > 0$.

Soit x > 1 un réel.

On sait qu'il existe deux suites de rationnels positifs, (u_n) et (v_n) , qui convergent vers x et telles que $u_n \le w \le v_n$ pour tout entier n.

Or, d'après iii), la fonction f est strictement croissante sur]1; $+\infty$ [donc, pour tout entier n, on a $f(u_n) < f(x) < f(v_n)$,

ou encore $u_n^2+u_n+1 < f(x) < \nu_n^2+\nu_n+1.$

En faisant tendre n vers $+\infty$, et d'après le théorème des gendarmes, il vient alors $f(x) = x^2 + x + 1$.

Ainsi, on a
$$f(x) = x^2 + x + 1$$
, pour tout réel $x > 1$. (3)

Donnons maintenant le coup de grâce.

Soit x un réel.

On choisit un entier n > 0 tel que x + n > 1.

De (2) et (3), on déduit que

$$f(x+n) = (x+n)^2 + (x+n) + 1$$
 et $f(x+n) = f(x) + 2nx + n^2 + n$.

En identifiant ces deux expressions, et après encore quelques calculs, il vient $f(x) = x^2 + x + 1$.

Et finalement, on a $f(x) = x^2 + x + 1$, pour tout réel x.

Ce n'est que routine que de vérifier que cette fonction est bien une solution du problème.

Exercice 8. Soit P et Q deux polynômes à coefficients réels, de degrés $n \ge 0$. On suppose que le coefficient de x^n de chacun de ces deux polynômes est égal à 1 et que, pour tout réel x, on a P(P(x)) = Q(Q(x)).

Prouver que P = Q.

<u>Solution de l'exercice 8</u> Le résultat est évident si n = 0. Dans ce qui suit, on suppose donc que $n \ge 1$.

Par l'absurde : supposons que le polynôme ${\sf R}={\sf P}-{\sf Q}$ ne soit pas le polynôme nul.

Soit k le degré de R.

Puisque P et Q sont tous deux de degré n, et de même coefficient dominant, on a $k \in \{0, \dots, n-1\}$. De plus, on a

$$P(P(x)) - Q(Q(x)) = [Q(P(x)) - Q(Q(x))] + R(P(x)).$$
 (1)

Posons $Q(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$.

On remarque qu'alors

$$Q(P(x)) - Q(Q(x)) = [P^{n}(x) - Q^{n}(x)] + a_{n-1}[P^{n-1}(x) - Q^{n-1}(x)] + \dots + a_{1}[P(x) - Q(x)],$$

et chacun des termes de cette somme autre que $[P^n(x) - Q^n(x)]$ est de degré au plus n(n-1). D'autre part, on a

$$[P^{n}(x) - Q^{n}(x)] = R(x)[P^{n-1}(x) + P^{n-2}(x)Q(x) + \dots + Q^{n-1}(x)],$$

ce qui assure que $[P^n(x) - Q^n(x)]$ est de degré n(n-1) + k et de coefficient dominant égal à n (on rappelle que P et Q sont tous les deux de coefficient dominant égal à 1).

- On suppose que k > 0.

Alors, le polynôme Q(P(x)) - Q(Q(x)) est de degré n(n-1) + k.

D'autre part, le degré de R(P(x)) est kn, et on a kn $\leq n(n-1) < n(n-1) + k$.

De (1), on déduit que P(P(x)) - Q(Q(x)) est de degré n(n-1) + k, et donc non nul, en contradiction avec l'énoncé.

- Il reste à étudier le cas où k = 0, c'est-à-dire lorsque R est constant.

Notons c cette constante. Notre hypothèse initiale assure que $c \neq 0$.

De
$$P(P(x)) = Q(Q(x))$$
, il vient $Q(Q(x) + c) = Q(Q(x)) - c$.

Puisque Q n'est pas constant, c'est donc que l'égalité Q(y + c) = Q(y) - c est vraie pour une infinité de réels y. S'agissant de polynômes, c'est donc qu'elle est vraie pour tout réel y.

Une récurrence immédiate conduit alors à $Q(jc) = a_0 - jc$ pour tout entier $j \ge 0$.

Comme ci-dessus, l'égalité $Q(x) = -x + a_0$ étant vraie pour une infinité de valeurs (puisque $c \neq 0$), elle est donc vraie pour tout x. Cela contredit que Q est de coefficient dominant égal à 1.

Ainsi, dans tous les cas, on a obtenu une contradiction. Cela assure que R est bien le polynôme nul, et achève la démonstration.

Autre solution.

Le résultat est facile à montrer si n=0 ou n=1. Dans ce qui suit, on suppose donc que $n \ge 2$. Notons R=P-Q et supposons par l'absurde qu'il est non nul. Quitte à permuter les rôles de P et de Q, on peut supposer que le coefficient dominant de R est strictement positif.

<u>Lemme 1.</u> Pour tout polynôme R ayant un coefficient dominant strictement positif, il existe un réel α tel que pour tout $x \geqslant \alpha$ on a R(x) > 0.

En effet, R(x) peut s'écrire sous la forme $cx^m(1+\frac{c_1}{x}+\cdots+\frac{c_m}{x^m})$ avec c>0. Le terme entre parenthèses tend vers 1 lorsque $x\to+\infty$, donc est strictement positif pour x assez grand.

<u>Lemme 2.</u> Pour tout polynôme P de degré $\geqslant 1$ ayant un coefficient dominant strictement positif, il existe α tel que P est strictement croissant sur $[\alpha, +\infty[$.

En effet, le polynôme dérivé P' vérifie les conditions du lemme 1 donc P'(x) est strictement positif pour x assez grand.

Revenons à l'exercice. D'après les deux lemmes précédents, il existe a tel que sur $[a, +\infty[$, P et Q sont strictement croissants, et R et R \circ Q sont strictement positifs.

On a alors pour tout $x \ge a$:

$$\begin{aligned} P(P(x)) &> P(Q(x)) & \text{puisque } P(x) > Q(x) \\ &= Q(Q(x)) + R(Q(x)) \\ &> Q(Q(x)), \end{aligned}$$

ce qui contredit P(P(x)) = Q(Q(x)).

Exercice 9. Soit n > 0 un entier et x_1, \dots, x_n des réels strictement positifs. Prouver que :

$$\begin{split} \max_{x_1>0,\cdots,x_n>0} \min(x_1,\frac{1}{x_1}+x_2,\cdots,\frac{1}{x_{n-1}}+x_n,\frac{1}{x_n}) = \\ \min_{x_1>0,\cdots,x_n>0} \max(x_1,\frac{1}{x_1}+x_2,\cdots,\frac{1}{x_{n-1}}+x_n,\frac{1}{x_n}) = 2\cos(\frac{\pi}{n+2}). \end{split}$$

<u>Solution de l'exercice 9</u> Soit U l'ensemble des n-uplets de réels strictement positifs. Pour $x=(x_1,\cdots,x_n)\in U$, on pose

$$m(x) = \min(x_1, \frac{1}{x_1} + x_2, \cdots, \frac{1}{x_{n-1}} + x_n, \frac{1}{x_n})$$

et $M(x) = \max(x_1, \frac{1}{x_1} + x_2, \cdots, \frac{1}{x_{n-1}} + x_n, \frac{1}{x_n})$

Notre stratégie va consister à prouver qu'il existe $a \in U$ tel que m(a) = M(a) et que, pour tout $x \in U$, on a $m(x) \leq m(a)$ et $M(a) \leq M(x)$.

Soit $\alpha=(\alpha_1,\cdots,\alpha_n)\in U.$ La condition $m(\alpha)=M(\alpha)$ s'écrit

$$a_1 = \frac{1}{a_1} + a_2 = \dots = \frac{1}{a_{n-1}} + a_n = \frac{1}{a_n}.$$
 (1)

Mais, admettons pour le moment que l'on ait déjà trouvé $a \in U$ tel que m(a) = M(a).

Par l'absurde : On suppose qu'il existe $x \in U$ tel que m(x) > m(a).

On prouve alors par récurrence sur k que $x_k>\alpha_k$ pour tout $k\in\{1,\cdots,n\}$:

Déjà, on a $x_1 \geqslant m(x) > m(a) = a_1$.

D'autre part, si $x_k > a_k$ pour un certain $k \in \{1, \dots, n-1\}$, alors

$$\frac{1}{x_{k}} + x_{k+1} \geqslant m(x) > m(a) = \frac{1}{a_{k}} + a_{k+1}.$$

Or, d'après l'hypothèse de récurrence, on a $\frac{1}{x_k} < \frac{1}{a_k}$, d'où $x_{k+1} > a_{k+1}$, ce qui achève la récurrence.

En particulier, on a donc $x_n>\alpha_n$. Mais, $\frac{1}{x_n}\geqslant m(x)>m(\alpha)=\frac{1}{\alpha_n}$, d'où $x_n<\alpha_n$. Contradiction.

Ainsi, pour tout $x \in U$, on a $m(x) \leq m(a)$.

On démontre de même que $M(a) \leq M(x)$, pour tout $x \in U$.

Dans ces conditions, on a $\max_{x \in \Pi} \{m(x)\} = m(\alpha) = \min_{x \in \Pi} \{M(x)\}$, comme désiré.

Pour conclure, il ne reste donc plus qu'à trouver $a \in U$ vérifiant (1).

Montrons comment trouver un tel a sans trop s'aider de l'énoncé :

Supposons qu'un tel a existe. On note $\alpha > 0$ la valeur commune dans (1).

On vérifie sans difficulté qu'alors, pour tout k, on a $a_k = \frac{b_k}{b_{k-1}}$, où $b_0 = 1$, $b_1 = \alpha$, et $b_j = \alpha b_{j-1} - b_{j-2}$ pour $j \geqslant 2$. (2)

Comme $\alpha = \frac{1}{a_n}$, on doit avoir $b_{n-1} = \alpha b_n$, ce qui signifie que $b_{n+1} = 0$.

Revenons sur α . En fait, on a même $\alpha < 2$:

En effet, supposons que $\alpha \geqslant 2$. Alors, $a_1 = \alpha \geqslant 2$ et, par une récurrence sans difficulté, on déduit que $\alpha_k = \alpha - \tfrac{1}{\alpha_{k-1}} \geqslant 1 + \tfrac{1}{k}.$

En particulier, on a $a_n \geqslant 1 + \frac{1}{n} > 1$ et $a_n = \frac{1}{\alpha} < 1$, contradiction.

On peut donc poser $\alpha = 2\cos(t)$ où $t \in]0, \frac{\pi}{2}[$.

Compte-tenu de la formule bien connue

$$2\cos(a)\sin(b) = \sin(b+a) + \sin(b-a),$$

une autre récurrence sans difficulté à partir de (2) conduit alors à

$$b_k = \frac{\sin((k+1)t)}{\sin(t)}$$
 pour tout $k \ge 0$.

La condition $b_{n+1}=0$ impose alors $t=\frac{\pi}{n+2}$. Ainsi, on a $\alpha=2\cos(\frac{\pi}{n+2})$ et $\alpha=(\alpha_1,\cdots,\alpha_n)$ où $\alpha_k = \frac{\sin(\frac{(k+1)\pi}{n+2})}{\sin(\frac{k\pi}{n+2})}.$

Réciproquement, on vérifie aisément que, dans ces conditions, la chaîne d'égalités (1) est vraie.

